Metamath Proof Explorer


Theorem znegscl

Description: The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Assertion znegscl A s + s A s

Proof

Step Hyp Ref Expression
1 nnsno n s n No
2 1 adantr n s m s n No
3 nnsno m s m No
4 3 adantl n s m s m No
5 2 4 negsubsdi2d n s m s + s n - s m = m - s n
6 fveqeq2 A = n - s m + s A = m - s n + s n - s m = m - s n
7 5 6 syl5ibrcom n s m s A = n - s m + s A = m - s n
8 7 reximdva n s m s A = n - s m m s + s A = m - s n
9 8 reximia n s m s A = n - s m n s m s + s A = m - s n
10 elzs A s n s m s A = n - s m
11 elzs + s A s m s n s + s A = m - s n
12 rexcom m s n s + s A = m - s n n s m s + s A = m - s n
13 11 12 bitri + s A s n s m s + s A = m - s n
14 9 10 13 3imtr4i A s + s A s