| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zmulscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤs ) |
| 2 |
|
zmulscld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℤs ) |
| 3 |
|
elzs |
⊢ ( 𝐴 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |
| 4 |
1 3
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |
| 5 |
|
elzs |
⊢ ( 𝐵 ∈ ℤs ↔ ∃ 𝑧 ∈ ℕs ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) |
| 6 |
2 5
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℕs ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) |
| 7 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
| 8 |
7
|
2rexbii |
⊢ ( ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
| 9 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑧 ∈ ℕs ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
| 10 |
8 9
|
bitri |
⊢ ( ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑧 ∈ ℕs ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
| 11 |
|
nnsno |
⊢ ( 𝑥 ∈ ℕs → 𝑥 ∈ No ) |
| 12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑥 ∈ No ) |
| 13 |
|
nnsno |
⊢ ( 𝑦 ∈ ℕs → 𝑦 ∈ No ) |
| 14 |
13
|
ad2antrl |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑦 ∈ No ) |
| 15 |
12 14
|
subscld |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑥 -s 𝑦 ) ∈ No ) |
| 16 |
|
nnsno |
⊢ ( 𝑧 ∈ ℕs → 𝑧 ∈ No ) |
| 17 |
16
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑧 ∈ No ) |
| 18 |
|
nnsno |
⊢ ( 𝑤 ∈ ℕs → 𝑤 ∈ No ) |
| 19 |
18
|
ad2antll |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑤 ∈ No ) |
| 20 |
15 17 19
|
subsdid |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 -s 𝑦 ) ·s ( 𝑧 -s 𝑤 ) ) = ( ( ( 𝑥 -s 𝑦 ) ·s 𝑧 ) -s ( ( 𝑥 -s 𝑦 ) ·s 𝑤 ) ) ) |
| 21 |
|
nnmulscl |
⊢ ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( 𝑥 ·s 𝑧 ) ∈ ℕs ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑥 ·s 𝑧 ) ∈ ℕs ) |
| 23 |
22
|
nnsnod |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑥 ·s 𝑧 ) ∈ No ) |
| 24 |
|
simprl |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑦 ∈ ℕs ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑧 ∈ ℕs ) |
| 26 |
|
nnmulscl |
⊢ ( ( 𝑦 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( 𝑦 ·s 𝑧 ) ∈ ℕs ) |
| 27 |
24 25 26
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑦 ·s 𝑧 ) ∈ ℕs ) |
| 28 |
27
|
nnsnod |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑦 ·s 𝑧 ) ∈ No ) |
| 29 |
23 28
|
subscld |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 ·s 𝑧 ) -s ( 𝑦 ·s 𝑧 ) ) ∈ No ) |
| 30 |
|
nnmulscl |
⊢ ( ( 𝑥 ∈ ℕs ∧ 𝑤 ∈ ℕs ) → ( 𝑥 ·s 𝑤 ) ∈ ℕs ) |
| 31 |
30
|
ad2ant2rl |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑥 ·s 𝑤 ) ∈ ℕs ) |
| 32 |
31
|
nnsnod |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑥 ·s 𝑤 ) ∈ No ) |
| 33 |
|
nnmulscl |
⊢ ( ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) → ( 𝑦 ·s 𝑤 ) ∈ ℕs ) |
| 34 |
33
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑦 ·s 𝑤 ) ∈ ℕs ) |
| 35 |
34
|
nnsnod |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( 𝑦 ·s 𝑤 ) ∈ No ) |
| 36 |
29 32 35
|
subsubs2d |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( ( 𝑥 ·s 𝑧 ) -s ( 𝑦 ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑤 ) -s ( 𝑦 ·s 𝑤 ) ) ) = ( ( ( 𝑥 ·s 𝑧 ) -s ( 𝑦 ·s 𝑧 ) ) +s ( ( 𝑦 ·s 𝑤 ) -s ( 𝑥 ·s 𝑤 ) ) ) ) |
| 37 |
12 14 17
|
subsdird |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 -s 𝑦 ) ·s 𝑧 ) = ( ( 𝑥 ·s 𝑧 ) -s ( 𝑦 ·s 𝑧 ) ) ) |
| 38 |
12 14 19
|
subsdird |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 -s 𝑦 ) ·s 𝑤 ) = ( ( 𝑥 ·s 𝑤 ) -s ( 𝑦 ·s 𝑤 ) ) ) |
| 39 |
37 38
|
oveq12d |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( ( 𝑥 -s 𝑦 ) ·s 𝑧 ) -s ( ( 𝑥 -s 𝑦 ) ·s 𝑤 ) ) = ( ( ( 𝑥 ·s 𝑧 ) -s ( 𝑦 ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑤 ) -s ( 𝑦 ·s 𝑤 ) ) ) ) |
| 40 |
23 35 28 32
|
addsubs4d |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) = ( ( ( 𝑥 ·s 𝑧 ) -s ( 𝑦 ·s 𝑧 ) ) +s ( ( 𝑦 ·s 𝑤 ) -s ( 𝑥 ·s 𝑤 ) ) ) ) |
| 41 |
36 39 40
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( ( 𝑥 -s 𝑦 ) ·s 𝑧 ) -s ( ( 𝑥 -s 𝑦 ) ·s 𝑤 ) ) = ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) ) |
| 42 |
20 41
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 -s 𝑦 ) ·s ( 𝑧 -s 𝑤 ) ) = ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) ) |
| 43 |
|
nnaddscl |
⊢ ( ( ( 𝑥 ·s 𝑧 ) ∈ ℕs ∧ ( 𝑦 ·s 𝑤 ) ∈ ℕs ) → ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) ∈ ℕs ) |
| 44 |
22 34 43
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) ∈ ℕs ) |
| 45 |
|
nnaddscl |
⊢ ( ( ( 𝑦 ·s 𝑧 ) ∈ ℕs ∧ ( 𝑥 ·s 𝑤 ) ∈ ℕs ) → ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ∈ ℕs ) |
| 46 |
27 31 45
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ∈ ℕs ) |
| 47 |
|
eqid |
⊢ ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) = ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) |
| 48 |
|
rspceov |
⊢ ( ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) ∈ ℕs ∧ ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ∈ ℕs ∧ ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) = ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) ) → ∃ 𝑡 ∈ ℕs ∃ 𝑢 ∈ ℕs ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) = ( 𝑡 -s 𝑢 ) ) |
| 49 |
47 48
|
mp3an3 |
⊢ ( ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) ∈ ℕs ∧ ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ∈ ℕs ) → ∃ 𝑡 ∈ ℕs ∃ 𝑢 ∈ ℕs ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) = ( 𝑡 -s 𝑢 ) ) |
| 50 |
44 46 49
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ∃ 𝑡 ∈ ℕs ∃ 𝑢 ∈ ℕs ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) = ( 𝑡 -s 𝑢 ) ) |
| 51 |
|
elzs |
⊢ ( ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) ∈ ℤs ↔ ∃ 𝑡 ∈ ℕs ∃ 𝑢 ∈ ℕs ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) = ( 𝑡 -s 𝑢 ) ) |
| 52 |
50 51
|
sylibr |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑤 ) ) -s ( ( 𝑦 ·s 𝑧 ) +s ( 𝑥 ·s 𝑤 ) ) ) ∈ ℤs ) |
| 53 |
42 52
|
eqeltrd |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 -s 𝑦 ) ·s ( 𝑧 -s 𝑤 ) ) ∈ ℤs ) |
| 54 |
|
oveq12 |
⊢ ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) = ( ( 𝑥 -s 𝑦 ) ·s ( 𝑧 -s 𝑤 ) ) ) |
| 55 |
54
|
eleq1d |
⊢ ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ ℤs ↔ ( ( 𝑥 -s 𝑦 ) ·s ( 𝑧 -s 𝑤 ) ) ∈ ℤs ) ) |
| 56 |
53 55
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) ∈ ℤs ) ) |
| 57 |
56
|
rexlimdvva |
⊢ ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) ∈ ℤs ) ) |
| 58 |
57
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) ∈ ℤs ) |
| 59 |
10 58
|
sylbir |
⊢ ( ( ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑧 ∈ ℕs ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 ·s 𝐵 ) ∈ ℤs ) |
| 60 |
4 6 59
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ ℤs ) |