| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negsubsdi2d.1 |
|- ( ph -> A e. No ) |
| 2 |
|
negsubsdi2d.2 |
|- ( ph -> B e. No ) |
| 3 |
2
|
negscld |
|- ( ph -> ( -us ` B ) e. No ) |
| 4 |
|
negsdi |
|- ( ( A e. No /\ ( -us ` B ) e. No ) -> ( -us ` ( A +s ( -us ` B ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` B ) ) ) ) |
| 5 |
1 3 4
|
syl2anc |
|- ( ph -> ( -us ` ( A +s ( -us ` B ) ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` B ) ) ) ) |
| 6 |
|
negnegs |
|- ( B e. No -> ( -us ` ( -us ` B ) ) = B ) |
| 7 |
2 6
|
syl |
|- ( ph -> ( -us ` ( -us ` B ) ) = B ) |
| 8 |
7
|
oveq2d |
|- ( ph -> ( ( -us ` A ) +s ( -us ` ( -us ` B ) ) ) = ( ( -us ` A ) +s B ) ) |
| 9 |
1
|
negscld |
|- ( ph -> ( -us ` A ) e. No ) |
| 10 |
9 2
|
addscomd |
|- ( ph -> ( ( -us ` A ) +s B ) = ( B +s ( -us ` A ) ) ) |
| 11 |
5 8 10
|
3eqtrd |
|- ( ph -> ( -us ` ( A +s ( -us ` B ) ) ) = ( B +s ( -us ` A ) ) ) |
| 12 |
1 2
|
subsvald |
|- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
| 13 |
12
|
fveq2d |
|- ( ph -> ( -us ` ( A -s B ) ) = ( -us ` ( A +s ( -us ` B ) ) ) ) |
| 14 |
2 1
|
subsvald |
|- ( ph -> ( B -s A ) = ( B +s ( -us ` A ) ) ) |
| 15 |
11 13 14
|
3eqtr4d |
|- ( ph -> ( -us ` ( A -s B ) ) = ( B -s A ) ) |