Step |
Hyp |
Ref |
Expression |
1 |
|
uzsind.1 |
|
2 |
|
uzsind.2 |
|
3 |
|
uzsind.3 |
|
4 |
|
uzsind.4 |
|
5 |
|
uzsind.5 |
|
6 |
|
uzsind.6 |
|
7 |
|
id |
|
8 |
|
zno |
|
9 |
|
slerflex |
|
10 |
8 9
|
syl |
|
11 |
7 10 5
|
jca32 |
|
12 |
|
breq2 |
|
13 |
12 1
|
anbi12d |
|
14 |
13
|
elrab |
|
15 |
11 14
|
sylibr |
|
16 |
|
simpl |
|
17 |
|
simprl |
|
18 |
|
simprrl |
|
19 |
|
simprrr |
|
20 |
|
id |
|
21 |
|
1zs |
|
22 |
21
|
a1i |
|
23 |
20 22
|
zaddscld |
|
24 |
23
|
3ad2ant2 |
|
25 |
24
|
adantr |
|
26 |
8
|
3ad2ant1 |
|
27 |
23
|
znod |
|
28 |
27
|
3ad2ant2 |
|
29 |
|
zno |
|
30 |
29
|
3ad2ant2 |
|
31 |
|
simp3 |
|
32 |
29
|
sltp1d |
|
33 |
32
|
3ad2ant2 |
|
34 |
26 30 28 31 33
|
slelttrd |
|
35 |
26 28 34
|
sltled |
|
36 |
35
|
adantr |
|
37 |
6
|
imp |
|
38 |
25 36 37
|
jca32 |
|
39 |
16 17 18 19 38
|
syl31anc |
|
40 |
|
breq2 |
|
41 |
40 2
|
anbi12d |
|
42 |
41
|
elrab |
|
43 |
42
|
anbi2i |
|
44 |
|
breq2 |
|
45 |
44 3
|
anbi12d |
|
46 |
45
|
elrab |
|
47 |
39 43 46
|
3imtr4i |
|
48 |
7 15 47
|
peano5uzs |
|
49 |
48
|
sseld |
|
50 |
|
breq2 |
|
51 |
50
|
elrab |
|
52 |
|
breq2 |
|
53 |
52 4
|
anbi12d |
|
54 |
53
|
elrab |
|
55 |
49 51 54
|
3imtr3g |
|
56 |
55
|
3impib |
|
57 |
56
|
simprrd |
|