Metamath Proof Explorer


Theorem uzsind

Description: Induction on the upper surreal integers that start at M . (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses uzsind.1 j = M φ ψ
uzsind.2 j = k φ χ
uzsind.3 j = k + s 1 s φ θ
uzsind.4 j = N φ τ
uzsind.5 M s ψ
uzsind.6 M s k s M s k χ θ
Assertion uzsind M s N s M s N τ

Proof

Step Hyp Ref Expression
1 uzsind.1 j = M φ ψ
2 uzsind.2 j = k φ χ
3 uzsind.3 j = k + s 1 s φ θ
4 uzsind.4 j = N φ τ
5 uzsind.5 M s ψ
6 uzsind.6 M s k s M s k χ θ
7 id M s M s
8 zno M s M No
9 slerflex M No M s M
10 8 9 syl M s M s M
11 7 10 5 jca32 M s M s M s M ψ
12 breq2 j = M M s j M s M
13 12 1 anbi12d j = M M s j φ M s M ψ
14 13 elrab M j s | M s j φ M s M s M ψ
15 11 14 sylibr M s M j s | M s j φ
16 simpl M s k s M s k χ M s
17 simprl M s k s M s k χ k s
18 simprrl M s k s M s k χ M s k
19 simprrr M s k s M s k χ χ
20 id k s k s
21 1zs 1 s s
22 21 a1i k s 1 s s
23 20 22 zaddscld k s k + s 1 s s
24 23 3ad2ant2 M s k s M s k k + s 1 s s
25 24 adantr M s k s M s k χ k + s 1 s s
26 8 3ad2ant1 M s k s M s k M No
27 23 znod k s k + s 1 s No
28 27 3ad2ant2 M s k s M s k k + s 1 s No
29 zno k s k No
30 29 3ad2ant2 M s k s M s k k No
31 simp3 M s k s M s k M s k
32 29 sltp1d k s k < s k + s 1 s
33 32 3ad2ant2 M s k s M s k k < s k + s 1 s
34 26 30 28 31 33 slelttrd M s k s M s k M < s k + s 1 s
35 26 28 34 sltled M s k s M s k M s k + s 1 s
36 35 adantr M s k s M s k χ M s k + s 1 s
37 6 imp M s k s M s k χ θ
38 25 36 37 jca32 M s k s M s k χ k + s 1 s s M s k + s 1 s θ
39 16 17 18 19 38 syl31anc M s k s M s k χ k + s 1 s s M s k + s 1 s θ
40 breq2 j = k M s j M s k
41 40 2 anbi12d j = k M s j φ M s k χ
42 41 elrab k j s | M s j φ k s M s k χ
43 42 anbi2i M s k j s | M s j φ M s k s M s k χ
44 breq2 j = k + s 1 s M s j M s k + s 1 s
45 44 3 anbi12d j = k + s 1 s M s j φ M s k + s 1 s θ
46 45 elrab k + s 1 s j s | M s j φ k + s 1 s s M s k + s 1 s θ
47 39 43 46 3imtr4i M s k j s | M s j φ k + s 1 s j s | M s j φ
48 7 15 47 peano5uzs M s w s | M s w j s | M s j φ
49 48 sseld M s N w s | M s w N j s | M s j φ
50 breq2 w = N M s w M s N
51 50 elrab N w s | M s w N s M s N
52 breq2 j = N M s j M s N
53 52 4 anbi12d j = N M s j φ M s N τ
54 53 elrab N j s | M s j φ N s M s N τ
55 49 51 54 3imtr3g M s N s M s N N s M s N τ
56 55 3impib M s N s M s N N s M s N τ
57 56 simprrd M s N s M s N τ