Step |
Hyp |
Ref |
Expression |
1 |
|
uzsind.1 |
⊢ ( 𝑗 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
uzsind.2 |
⊢ ( 𝑗 = 𝑘 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
uzsind.3 |
⊢ ( 𝑗 = ( 𝑘 +s 1s ) → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
uzsind.4 |
⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
uzsind.5 |
⊢ ( 𝑀 ∈ ℤs → 𝜓 ) |
6 |
|
uzsind.6 |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → ( 𝜒 → 𝜃 ) ) |
7 |
|
id |
⊢ ( 𝑀 ∈ ℤs → 𝑀 ∈ ℤs ) |
8 |
|
zno |
⊢ ( 𝑀 ∈ ℤs → 𝑀 ∈ No ) |
9 |
|
slerflex |
⊢ ( 𝑀 ∈ No → 𝑀 ≤s 𝑀 ) |
10 |
8 9
|
syl |
⊢ ( 𝑀 ∈ ℤs → 𝑀 ≤s 𝑀 ) |
11 |
7 10 5
|
jca32 |
⊢ ( 𝑀 ∈ ℤs → ( 𝑀 ∈ ℤs ∧ ( 𝑀 ≤s 𝑀 ∧ 𝜓 ) ) ) |
12 |
|
breq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑀 ≤s 𝑗 ↔ 𝑀 ≤s 𝑀 ) ) |
13 |
12 1
|
anbi12d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) ↔ ( 𝑀 ≤s 𝑀 ∧ 𝜓 ) ) ) |
14 |
13
|
elrab |
⊢ ( 𝑀 ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ↔ ( 𝑀 ∈ ℤs ∧ ( 𝑀 ≤s 𝑀 ∧ 𝜓 ) ) ) |
15 |
11 14
|
sylibr |
⊢ ( 𝑀 ∈ ℤs → 𝑀 ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ) |
16 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℤs ∧ ( 𝑘 ∈ ℤs ∧ ( 𝑀 ≤s 𝑘 ∧ 𝜒 ) ) ) → 𝑀 ∈ ℤs ) |
17 |
|
simprl |
⊢ ( ( 𝑀 ∈ ℤs ∧ ( 𝑘 ∈ ℤs ∧ ( 𝑀 ≤s 𝑘 ∧ 𝜒 ) ) ) → 𝑘 ∈ ℤs ) |
18 |
|
simprrl |
⊢ ( ( 𝑀 ∈ ℤs ∧ ( 𝑘 ∈ ℤs ∧ ( 𝑀 ≤s 𝑘 ∧ 𝜒 ) ) ) → 𝑀 ≤s 𝑘 ) |
19 |
|
simprrr |
⊢ ( ( 𝑀 ∈ ℤs ∧ ( 𝑘 ∈ ℤs ∧ ( 𝑀 ≤s 𝑘 ∧ 𝜒 ) ) ) → 𝜒 ) |
20 |
|
id |
⊢ ( 𝑘 ∈ ℤs → 𝑘 ∈ ℤs ) |
21 |
|
1zs |
⊢ 1s ∈ ℤs |
22 |
21
|
a1i |
⊢ ( 𝑘 ∈ ℤs → 1s ∈ ℤs ) |
23 |
20 22
|
zaddscld |
⊢ ( 𝑘 ∈ ℤs → ( 𝑘 +s 1s ) ∈ ℤs ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → ( 𝑘 +s 1s ) ∈ ℤs ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) ∧ 𝜒 ) → ( 𝑘 +s 1s ) ∈ ℤs ) |
26 |
8
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → 𝑀 ∈ No ) |
27 |
23
|
znod |
⊢ ( 𝑘 ∈ ℤs → ( 𝑘 +s 1s ) ∈ No ) |
28 |
27
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → ( 𝑘 +s 1s ) ∈ No ) |
29 |
|
zno |
⊢ ( 𝑘 ∈ ℤs → 𝑘 ∈ No ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → 𝑘 ∈ No ) |
31 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → 𝑀 ≤s 𝑘 ) |
32 |
29
|
sltp1d |
⊢ ( 𝑘 ∈ ℤs → 𝑘 <s ( 𝑘 +s 1s ) ) |
33 |
32
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → 𝑘 <s ( 𝑘 +s 1s ) ) |
34 |
26 30 28 31 33
|
slelttrd |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → 𝑀 <s ( 𝑘 +s 1s ) ) |
35 |
26 28 34
|
sltled |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) → 𝑀 ≤s ( 𝑘 +s 1s ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) ∧ 𝜒 ) → 𝑀 ≤s ( 𝑘 +s 1s ) ) |
37 |
6
|
imp |
⊢ ( ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) ∧ 𝜒 ) → 𝜃 ) |
38 |
25 36 37
|
jca32 |
⊢ ( ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ ℤs ∧ 𝑀 ≤s 𝑘 ) ∧ 𝜒 ) → ( ( 𝑘 +s 1s ) ∈ ℤs ∧ ( 𝑀 ≤s ( 𝑘 +s 1s ) ∧ 𝜃 ) ) ) |
39 |
16 17 18 19 38
|
syl31anc |
⊢ ( ( 𝑀 ∈ ℤs ∧ ( 𝑘 ∈ ℤs ∧ ( 𝑀 ≤s 𝑘 ∧ 𝜒 ) ) ) → ( ( 𝑘 +s 1s ) ∈ ℤs ∧ ( 𝑀 ≤s ( 𝑘 +s 1s ) ∧ 𝜃 ) ) ) |
40 |
|
breq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑀 ≤s 𝑗 ↔ 𝑀 ≤s 𝑘 ) ) |
41 |
40 2
|
anbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) ↔ ( 𝑀 ≤s 𝑘 ∧ 𝜒 ) ) ) |
42 |
41
|
elrab |
⊢ ( 𝑘 ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ↔ ( 𝑘 ∈ ℤs ∧ ( 𝑀 ≤s 𝑘 ∧ 𝜒 ) ) ) |
43 |
42
|
anbi2i |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ) ↔ ( 𝑀 ∈ ℤs ∧ ( 𝑘 ∈ ℤs ∧ ( 𝑀 ≤s 𝑘 ∧ 𝜒 ) ) ) ) |
44 |
|
breq2 |
⊢ ( 𝑗 = ( 𝑘 +s 1s ) → ( 𝑀 ≤s 𝑗 ↔ 𝑀 ≤s ( 𝑘 +s 1s ) ) ) |
45 |
44 3
|
anbi12d |
⊢ ( 𝑗 = ( 𝑘 +s 1s ) → ( ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) ↔ ( 𝑀 ≤s ( 𝑘 +s 1s ) ∧ 𝜃 ) ) ) |
46 |
45
|
elrab |
⊢ ( ( 𝑘 +s 1s ) ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ↔ ( ( 𝑘 +s 1s ) ∈ ℤs ∧ ( 𝑀 ≤s ( 𝑘 +s 1s ) ∧ 𝜃 ) ) ) |
47 |
39 43 46
|
3imtr4i |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑘 ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ) → ( 𝑘 +s 1s ) ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ) |
48 |
7 15 47
|
peano5uzs |
⊢ ( 𝑀 ∈ ℤs → { 𝑤 ∈ ℤs ∣ 𝑀 ≤s 𝑤 } ⊆ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ) |
49 |
48
|
sseld |
⊢ ( 𝑀 ∈ ℤs → ( 𝑁 ∈ { 𝑤 ∈ ℤs ∣ 𝑀 ≤s 𝑤 } → 𝑁 ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ) ) |
50 |
|
breq2 |
⊢ ( 𝑤 = 𝑁 → ( 𝑀 ≤s 𝑤 ↔ 𝑀 ≤s 𝑁 ) ) |
51 |
50
|
elrab |
⊢ ( 𝑁 ∈ { 𝑤 ∈ ℤs ∣ 𝑀 ≤s 𝑤 } ↔ ( 𝑁 ∈ ℤs ∧ 𝑀 ≤s 𝑁 ) ) |
52 |
|
breq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝑀 ≤s 𝑗 ↔ 𝑀 ≤s 𝑁 ) ) |
53 |
52 4
|
anbi12d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) ↔ ( 𝑀 ≤s 𝑁 ∧ 𝜏 ) ) ) |
54 |
53
|
elrab |
⊢ ( 𝑁 ∈ { 𝑗 ∈ ℤs ∣ ( 𝑀 ≤s 𝑗 ∧ 𝜑 ) } ↔ ( 𝑁 ∈ ℤs ∧ ( 𝑀 ≤s 𝑁 ∧ 𝜏 ) ) ) |
55 |
49 51 54
|
3imtr3g |
⊢ ( 𝑀 ∈ ℤs → ( ( 𝑁 ∈ ℤs ∧ 𝑀 ≤s 𝑁 ) → ( 𝑁 ∈ ℤs ∧ ( 𝑀 ≤s 𝑁 ∧ 𝜏 ) ) ) ) |
56 |
55
|
3impib |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs ∧ 𝑀 ≤s 𝑁 ) → ( 𝑁 ∈ ℤs ∧ ( 𝑀 ≤s 𝑁 ∧ 𝜏 ) ) ) |
57 |
56
|
simprrd |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs ∧ 𝑀 ≤s 𝑁 ) → 𝜏 ) |