| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzsind.1 | ⊢ ( 𝑗  =  𝑀  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | uzsind.2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | uzsind.3 | ⊢ ( 𝑗  =  ( 𝑘  +s   1s  )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | uzsind.4 | ⊢ ( 𝑗  =  𝑁  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | uzsind.5 | ⊢ ( 𝑀  ∈  ℤs  →  𝜓 ) | 
						
							| 6 |  | uzsind.6 | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑀  ∈  ℤs  →  𝑀  ∈  ℤs ) | 
						
							| 8 |  | zno | ⊢ ( 𝑀  ∈  ℤs  →  𝑀  ∈   No  ) | 
						
							| 9 |  | slerflex | ⊢ ( 𝑀  ∈   No   →  𝑀  ≤s  𝑀 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑀  ∈  ℤs  →  𝑀  ≤s  𝑀 ) | 
						
							| 11 | 7 10 5 | jca32 | ⊢ ( 𝑀  ∈  ℤs  →  ( 𝑀  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑀  ∧  𝜓 ) ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑗  =  𝑀  →  ( 𝑀  ≤s  𝑗  ↔  𝑀  ≤s  𝑀 ) ) | 
						
							| 13 | 12 1 | anbi12d | ⊢ ( 𝑗  =  𝑀  →  ( ( 𝑀  ≤s  𝑗  ∧  𝜑 )  ↔  ( 𝑀  ≤s  𝑀  ∧  𝜓 ) ) ) | 
						
							| 14 | 13 | elrab | ⊢ ( 𝑀  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) }  ↔  ( 𝑀  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑀  ∧  𝜓 ) ) ) | 
						
							| 15 | 11 14 | sylibr | ⊢ ( 𝑀  ∈  ℤs  →  𝑀  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) } ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝑀  ∈  ℤs  ∧  ( 𝑘  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑘  ∧  𝜒 ) ) )  →  𝑀  ∈  ℤs ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝑀  ∈  ℤs  ∧  ( 𝑘  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑘  ∧  𝜒 ) ) )  →  𝑘  ∈  ℤs ) | 
						
							| 18 |  | simprrl | ⊢ ( ( 𝑀  ∈  ℤs  ∧  ( 𝑘  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑘  ∧  𝜒 ) ) )  →  𝑀  ≤s  𝑘 ) | 
						
							| 19 |  | simprrr | ⊢ ( ( 𝑀  ∈  ℤs  ∧  ( 𝑘  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑘  ∧  𝜒 ) ) )  →  𝜒 ) | 
						
							| 20 |  | id | ⊢ ( 𝑘  ∈  ℤs  →  𝑘  ∈  ℤs ) | 
						
							| 21 |  | 1zs | ⊢  1s   ∈  ℤs | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑘  ∈  ℤs  →   1s   ∈  ℤs ) | 
						
							| 23 | 20 22 | zaddscld | ⊢ ( 𝑘  ∈  ℤs  →  ( 𝑘  +s   1s  )  ∈  ℤs ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  ( 𝑘  +s   1s  )  ∈  ℤs ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  ∧  𝜒 )  →  ( 𝑘  +s   1s  )  ∈  ℤs ) | 
						
							| 26 | 8 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  𝑀  ∈   No  ) | 
						
							| 27 | 23 | znod | ⊢ ( 𝑘  ∈  ℤs  →  ( 𝑘  +s   1s  )  ∈   No  ) | 
						
							| 28 | 27 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  ( 𝑘  +s   1s  )  ∈   No  ) | 
						
							| 29 |  | zno | ⊢ ( 𝑘  ∈  ℤs  →  𝑘  ∈   No  ) | 
						
							| 30 | 29 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  𝑘  ∈   No  ) | 
						
							| 31 |  | simp3 | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  𝑀  ≤s  𝑘 ) | 
						
							| 32 | 29 | sltp1d | ⊢ ( 𝑘  ∈  ℤs  →  𝑘  <s  ( 𝑘  +s   1s  ) ) | 
						
							| 33 | 32 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  𝑘  <s  ( 𝑘  +s   1s  ) ) | 
						
							| 34 | 26 30 28 31 33 | slelttrd | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  𝑀  <s  ( 𝑘  +s   1s  ) ) | 
						
							| 35 | 26 28 34 | sltled | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  →  𝑀  ≤s  ( 𝑘  +s   1s  ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  ∧  𝜒 )  →  𝑀  ≤s  ( 𝑘  +s   1s  ) ) | 
						
							| 37 | 6 | imp | ⊢ ( ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  ∧  𝜒 )  →  𝜃 ) | 
						
							| 38 | 25 36 37 | jca32 | ⊢ ( ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  ℤs  ∧  𝑀  ≤s  𝑘 )  ∧  𝜒 )  →  ( ( 𝑘  +s   1s  )  ∈  ℤs  ∧  ( 𝑀  ≤s  ( 𝑘  +s   1s  )  ∧  𝜃 ) ) ) | 
						
							| 39 | 16 17 18 19 38 | syl31anc | ⊢ ( ( 𝑀  ∈  ℤs  ∧  ( 𝑘  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑘  ∧  𝜒 ) ) )  →  ( ( 𝑘  +s   1s  )  ∈  ℤs  ∧  ( 𝑀  ≤s  ( 𝑘  +s   1s  )  ∧  𝜃 ) ) ) | 
						
							| 40 |  | breq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑀  ≤s  𝑗  ↔  𝑀  ≤s  𝑘 ) ) | 
						
							| 41 | 40 2 | anbi12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑀  ≤s  𝑗  ∧  𝜑 )  ↔  ( 𝑀  ≤s  𝑘  ∧  𝜒 ) ) ) | 
						
							| 42 | 41 | elrab | ⊢ ( 𝑘  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) }  ↔  ( 𝑘  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑘  ∧  𝜒 ) ) ) | 
						
							| 43 | 42 | anbi2i | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) } )  ↔  ( 𝑀  ∈  ℤs  ∧  ( 𝑘  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑘  ∧  𝜒 ) ) ) ) | 
						
							| 44 |  | breq2 | ⊢ ( 𝑗  =  ( 𝑘  +s   1s  )  →  ( 𝑀  ≤s  𝑗  ↔  𝑀  ≤s  ( 𝑘  +s   1s  ) ) ) | 
						
							| 45 | 44 3 | anbi12d | ⊢ ( 𝑗  =  ( 𝑘  +s   1s  )  →  ( ( 𝑀  ≤s  𝑗  ∧  𝜑 )  ↔  ( 𝑀  ≤s  ( 𝑘  +s   1s  )  ∧  𝜃 ) ) ) | 
						
							| 46 | 45 | elrab | ⊢ ( ( 𝑘  +s   1s  )  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) }  ↔  ( ( 𝑘  +s   1s  )  ∈  ℤs  ∧  ( 𝑀  ≤s  ( 𝑘  +s   1s  )  ∧  𝜃 ) ) ) | 
						
							| 47 | 39 43 46 | 3imtr4i | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑘  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) } )  →  ( 𝑘  +s   1s  )  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) } ) | 
						
							| 48 | 7 15 47 | peano5uzs | ⊢ ( 𝑀  ∈  ℤs  →  { 𝑤  ∈  ℤs  ∣  𝑀  ≤s  𝑤 }  ⊆  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) } ) | 
						
							| 49 | 48 | sseld | ⊢ ( 𝑀  ∈  ℤs  →  ( 𝑁  ∈  { 𝑤  ∈  ℤs  ∣  𝑀  ≤s  𝑤 }  →  𝑁  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) } ) ) | 
						
							| 50 |  | breq2 | ⊢ ( 𝑤  =  𝑁  →  ( 𝑀  ≤s  𝑤  ↔  𝑀  ≤s  𝑁 ) ) | 
						
							| 51 | 50 | elrab | ⊢ ( 𝑁  ∈  { 𝑤  ∈  ℤs  ∣  𝑀  ≤s  𝑤 }  ↔  ( 𝑁  ∈  ℤs  ∧  𝑀  ≤s  𝑁 ) ) | 
						
							| 52 |  | breq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑀  ≤s  𝑗  ↔  𝑀  ≤s  𝑁 ) ) | 
						
							| 53 | 52 4 | anbi12d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑀  ≤s  𝑗  ∧  𝜑 )  ↔  ( 𝑀  ≤s  𝑁  ∧  𝜏 ) ) ) | 
						
							| 54 | 53 | elrab | ⊢ ( 𝑁  ∈  { 𝑗  ∈  ℤs  ∣  ( 𝑀  ≤s  𝑗  ∧  𝜑 ) }  ↔  ( 𝑁  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑁  ∧  𝜏 ) ) ) | 
						
							| 55 | 49 51 54 | 3imtr3g | ⊢ ( 𝑀  ∈  ℤs  →  ( ( 𝑁  ∈  ℤs  ∧  𝑀  ≤s  𝑁 )  →  ( 𝑁  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑁  ∧  𝜏 ) ) ) ) | 
						
							| 56 | 55 | 3impib | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑁  ∈  ℤs  ∧  𝑀  ≤s  𝑁 )  →  ( 𝑁  ∈  ℤs  ∧  ( 𝑀  ≤s  𝑁  ∧  𝜏 ) ) ) | 
						
							| 57 | 56 | simprrd | ⊢ ( ( 𝑀  ∈  ℤs  ∧  𝑁  ∈  ℤs  ∧  𝑀  ≤s  𝑁 )  →  𝜏 ) |