Metamath Proof Explorer


Theorem peano5uzs

Description: Peano's inductive postulate for upper surreal integers. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses peano5uzs.1 φ N s
peano5uzs.2 φ N A
peano5uzs.3 φ x A x + s 1 s A
Assertion peano5uzs φ k s | N s k A

Proof

Step Hyp Ref Expression
1 peano5uzs.1 φ N s
2 peano5uzs.2 φ N A
3 peano5uzs.3 φ x A x + s 1 s A
4 breq2 k = n N s k N s n
5 4 elrab n k s | N s k n s N s n
6 zno n s n No
7 6 adantr n s N s n n No
8 1 znod φ N No
9 npcans n No N No n - s N + s N = n
10 7 8 9 syl2anr φ n s N s n n - s N + s N = n
11 simprl φ n s N s n n s
12 1 adantr φ n s N s n N s
13 11 12 zsubscld φ n s N s n n - s N s
14 6 adantl φ n s n No
15 8 adantr φ n s N No
16 14 15 subsge0d φ n s 0 s s n - s N N s n
17 16 biimpar φ n s N s n 0 s s n - s N
18 17 anasss φ n s N s n 0 s s n - s N
19 13 18 jca φ n s N s n n - s N s 0 s s n - s N
20 eln0zs n - s N 0s n - s N s 0 s s n - s N
21 19 20 sylibr φ n s N s n n - s N 0s
22 21 ex φ n s N s n n - s N 0s
23 oveq1 z = 0 s z + s N = 0 s + s N
24 23 eleq1d z = 0 s z + s N A 0 s + s N A
25 24 imbi2d z = 0 s φ z + s N A φ 0 s + s N A
26 oveq1 z = y z + s N = y + s N
27 26 eleq1d z = y z + s N A y + s N A
28 27 imbi2d z = y φ z + s N A φ y + s N A
29 oveq1 z = y + s 1 s z + s N = y + s 1 s + s N
30 29 eleq1d z = y + s 1 s z + s N A y + s 1 s + s N A
31 30 imbi2d z = y + s 1 s φ z + s N A φ y + s 1 s + s N A
32 oveq1 z = n - s N z + s N = n - s N + s N
33 32 eleq1d z = n - s N z + s N A n - s N + s N A
34 33 imbi2d z = n - s N φ z + s N A φ n - s N + s N A
35 addslid N No 0 s + s N = N
36 8 35 syl φ 0 s + s N = N
37 36 2 eqeltrd φ 0 s + s N A
38 3 ralrimiva φ x A x + s 1 s A
39 oveq1 x = y + s N x + s 1 s = y + s N + s 1 s
40 39 eleq1d x = y + s N x + s 1 s A y + s N + s 1 s A
41 40 rspccv x A x + s 1 s A y + s N A y + s N + s 1 s A
42 38 41 syl φ y + s N A y + s N + s 1 s A
43 42 adantl y 0s φ y + s N A y + s N + s 1 s A
44 n0sno y 0s y No
45 44 adantr y 0s φ y No
46 1sno 1 s No
47 46 a1i y 0s φ 1 s No
48 8 adantl y 0s φ N No
49 45 47 48 adds32d y 0s φ y + s 1 s + s N = y + s N + s 1 s
50 49 eleq1d y 0s φ y + s 1 s + s N A y + s N + s 1 s A
51 43 50 sylibrd y 0s φ y + s N A y + s 1 s + s N A
52 51 ex y 0s φ y + s N A y + s 1 s + s N A
53 52 a2d y 0s φ y + s N A φ y + s 1 s + s N A
54 25 28 31 34 37 53 n0sind n - s N 0s φ n - s N + s N A
55 54 com12 φ n - s N 0s n - s N + s N A
56 22 55 syld φ n s N s n n - s N + s N A
57 56 imp φ n s N s n n - s N + s N A
58 10 57 eqeltrrd φ n s N s n n A
59 58 ex φ n s N s n n A
60 5 59 biimtrid φ n k s | N s k n A
61 60 ssrdv φ k s | N s k A