| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano5uzs.1 |
|
| 2 |
|
peano5uzs.2 |
|
| 3 |
|
peano5uzs.3 |
|
| 4 |
|
breq2 |
|
| 5 |
4
|
elrab |
|
| 6 |
|
zno |
|
| 7 |
6
|
adantr |
|
| 8 |
1
|
znod |
|
| 9 |
|
npcans |
|
| 10 |
7 8 9
|
syl2anr |
|
| 11 |
|
simprl |
|
| 12 |
1
|
adantr |
|
| 13 |
11 12
|
zsubscld |
|
| 14 |
6
|
adantl |
|
| 15 |
8
|
adantr |
|
| 16 |
14 15
|
subsge0d |
|
| 17 |
16
|
biimpar |
|
| 18 |
17
|
anasss |
|
| 19 |
13 18
|
jca |
|
| 20 |
|
eln0zs |
|
| 21 |
19 20
|
sylibr |
|
| 22 |
21
|
ex |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
eleq1d |
|
| 25 |
24
|
imbi2d |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
eleq1d |
|
| 28 |
27
|
imbi2d |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
eleq1d |
|
| 31 |
30
|
imbi2d |
|
| 32 |
|
oveq1 |
|
| 33 |
32
|
eleq1d |
|
| 34 |
33
|
imbi2d |
|
| 35 |
|
addslid |
|
| 36 |
8 35
|
syl |
|
| 37 |
36 2
|
eqeltrd |
|
| 38 |
3
|
ralrimiva |
|
| 39 |
|
oveq1 |
|
| 40 |
39
|
eleq1d |
|
| 41 |
40
|
rspccv |
|
| 42 |
38 41
|
syl |
|
| 43 |
42
|
adantl |
|
| 44 |
|
n0sno |
|
| 45 |
44
|
adantr |
|
| 46 |
|
1sno |
|
| 47 |
46
|
a1i |
|
| 48 |
8
|
adantl |
|
| 49 |
45 47 48
|
adds32d |
|
| 50 |
49
|
eleq1d |
|
| 51 |
43 50
|
sylibrd |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
a2d |
|
| 54 |
25 28 31 34 37 53
|
n0sind |
|
| 55 |
54
|
com12 |
|
| 56 |
22 55
|
syld |
|
| 57 |
56
|
imp |
|
| 58 |
10 57
|
eqeltrrd |
|
| 59 |
58
|
ex |
|
| 60 |
5 59
|
biimtrid |
|
| 61 |
60
|
ssrdv |
|