Step |
Hyp |
Ref |
Expression |
1 |
|
peano5uzs.1 |
|
2 |
|
peano5uzs.2 |
|
3 |
|
peano5uzs.3 |
|
4 |
|
breq2 |
|
5 |
4
|
elrab |
|
6 |
|
zno |
|
7 |
6
|
adantr |
|
8 |
1
|
znod |
|
9 |
|
npcans |
|
10 |
7 8 9
|
syl2anr |
|
11 |
|
simprl |
|
12 |
1
|
adantr |
|
13 |
11 12
|
zsubscld |
|
14 |
6
|
adantl |
|
15 |
8
|
adantr |
|
16 |
14 15
|
subsge0d |
|
17 |
16
|
biimpar |
|
18 |
17
|
anasss |
|
19 |
13 18
|
jca |
|
20 |
|
eln0zs |
|
21 |
19 20
|
sylibr |
|
22 |
21
|
ex |
|
23 |
|
oveq1 |
|
24 |
23
|
eleq1d |
|
25 |
24
|
imbi2d |
|
26 |
|
oveq1 |
|
27 |
26
|
eleq1d |
|
28 |
27
|
imbi2d |
|
29 |
|
oveq1 |
|
30 |
29
|
eleq1d |
|
31 |
30
|
imbi2d |
|
32 |
|
oveq1 |
|
33 |
32
|
eleq1d |
|
34 |
33
|
imbi2d |
|
35 |
|
addslid |
|
36 |
8 35
|
syl |
|
37 |
36 2
|
eqeltrd |
|
38 |
3
|
ralrimiva |
|
39 |
|
oveq1 |
|
40 |
39
|
eleq1d |
|
41 |
40
|
rspccv |
|
42 |
38 41
|
syl |
|
43 |
42
|
adantl |
|
44 |
|
n0sno |
|
45 |
44
|
adantr |
|
46 |
|
1sno |
|
47 |
46
|
a1i |
|
48 |
8
|
adantl |
|
49 |
45 47 48
|
adds32d |
|
50 |
49
|
eleq1d |
|
51 |
43 50
|
sylibrd |
|
52 |
51
|
ex |
|
53 |
52
|
a2d |
|
54 |
25 28 31 34 37 53
|
n0sind |
|
55 |
54
|
com12 |
|
56 |
22 55
|
syld |
|
57 |
56
|
imp |
|
58 |
10 57
|
eqeltrrd |
|
59 |
58
|
ex |
|
60 |
5 59
|
biimtrid |
|
61 |
60
|
ssrdv |
|