Metamath Proof Explorer


Theorem zaddscld

Description: The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses zaddscld.1
|- ( ph -> A e. ZZ_s )
zaddscld.2
|- ( ph -> B e. ZZ_s )
Assertion zaddscld
|- ( ph -> ( A +s B ) e. ZZ_s )

Proof

Step Hyp Ref Expression
1 zaddscld.1
 |-  ( ph -> A e. ZZ_s )
2 zaddscld.2
 |-  ( ph -> B e. ZZ_s )
3 zaddscl
 |-  ( ( A e. ZZ_s /\ B e. ZZ_s ) -> ( A +s B ) e. ZZ_s )
4 1 2 3 syl2anc
 |-  ( ph -> ( A +s B ) e. ZZ_s )