| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0zs |  |-  ( N e. NN0_s -> N e. ZZ_s ) | 
						
							| 2 |  | n0sge0 |  |-  ( N e. NN0_s -> 0s <_s N ) | 
						
							| 3 | 1 2 | jca |  |-  ( N e. NN0_s -> ( N e. ZZ_s /\ 0s <_s N ) ) | 
						
							| 4 |  | elzs |  |-  ( N e. ZZ_s <-> E. x e. NN_s E. y e. NN_s N = ( x -s y ) ) | 
						
							| 5 |  | nnsno |  |-  ( x e. NN_s -> x e. No ) | 
						
							| 6 | 5 | adantr |  |-  ( ( x e. NN_s /\ y e. NN_s ) -> x e. No ) | 
						
							| 7 |  | nnsno |  |-  ( y e. NN_s -> y e. No ) | 
						
							| 8 | 7 | adantl |  |-  ( ( x e. NN_s /\ y e. NN_s ) -> y e. No ) | 
						
							| 9 | 6 8 | subsge0d |  |-  ( ( x e. NN_s /\ y e. NN_s ) -> ( 0s <_s ( x -s y ) <-> y <_s x ) ) | 
						
							| 10 |  | nnn0s |  |-  ( y e. NN_s -> y e. NN0_s ) | 
						
							| 11 |  | nnn0s |  |-  ( x e. NN_s -> x e. NN0_s ) | 
						
							| 12 |  | n0subs |  |-  ( ( y e. NN0_s /\ x e. NN0_s ) -> ( y <_s x <-> ( x -s y ) e. NN0_s ) ) | 
						
							| 13 | 10 11 12 | syl2anr |  |-  ( ( x e. NN_s /\ y e. NN_s ) -> ( y <_s x <-> ( x -s y ) e. NN0_s ) ) | 
						
							| 14 | 9 13 | bitrd |  |-  ( ( x e. NN_s /\ y e. NN_s ) -> ( 0s <_s ( x -s y ) <-> ( x -s y ) e. NN0_s ) ) | 
						
							| 15 | 14 | biimpd |  |-  ( ( x e. NN_s /\ y e. NN_s ) -> ( 0s <_s ( x -s y ) -> ( x -s y ) e. NN0_s ) ) | 
						
							| 16 |  | breq2 |  |-  ( N = ( x -s y ) -> ( 0s <_s N <-> 0s <_s ( x -s y ) ) ) | 
						
							| 17 |  | eleq1 |  |-  ( N = ( x -s y ) -> ( N e. NN0_s <-> ( x -s y ) e. NN0_s ) ) | 
						
							| 18 | 16 17 | imbi12d |  |-  ( N = ( x -s y ) -> ( ( 0s <_s N -> N e. NN0_s ) <-> ( 0s <_s ( x -s y ) -> ( x -s y ) e. NN0_s ) ) ) | 
						
							| 19 | 15 18 | syl5ibrcom |  |-  ( ( x e. NN_s /\ y e. NN_s ) -> ( N = ( x -s y ) -> ( 0s <_s N -> N e. NN0_s ) ) ) | 
						
							| 20 | 19 | rexlimivv |  |-  ( E. x e. NN_s E. y e. NN_s N = ( x -s y ) -> ( 0s <_s N -> N e. NN0_s ) ) | 
						
							| 21 | 4 20 | sylbi |  |-  ( N e. ZZ_s -> ( 0s <_s N -> N e. NN0_s ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( N e. ZZ_s /\ 0s <_s N ) -> N e. NN0_s ) | 
						
							| 23 | 3 22 | impbii |  |-  ( N e. NN0_s <-> ( N e. ZZ_s /\ 0s <_s N ) ) |