Step |
Hyp |
Ref |
Expression |
1 |
|
n0zs |
|- ( N e. NN0_s -> N e. ZZ_s ) |
2 |
|
n0sge0 |
|- ( N e. NN0_s -> 0s <_s N ) |
3 |
1 2
|
jca |
|- ( N e. NN0_s -> ( N e. ZZ_s /\ 0s <_s N ) ) |
4 |
|
elzs |
|- ( N e. ZZ_s <-> E. x e. NN_s E. y e. NN_s N = ( x -s y ) ) |
5 |
|
nnsno |
|- ( x e. NN_s -> x e. No ) |
6 |
5
|
adantr |
|- ( ( x e. NN_s /\ y e. NN_s ) -> x e. No ) |
7 |
|
nnsno |
|- ( y e. NN_s -> y e. No ) |
8 |
7
|
adantl |
|- ( ( x e. NN_s /\ y e. NN_s ) -> y e. No ) |
9 |
6 8
|
subsge0d |
|- ( ( x e. NN_s /\ y e. NN_s ) -> ( 0s <_s ( x -s y ) <-> y <_s x ) ) |
10 |
|
nnn0s |
|- ( y e. NN_s -> y e. NN0_s ) |
11 |
|
nnn0s |
|- ( x e. NN_s -> x e. NN0_s ) |
12 |
|
n0subs |
|- ( ( y e. NN0_s /\ x e. NN0_s ) -> ( y <_s x <-> ( x -s y ) e. NN0_s ) ) |
13 |
10 11 12
|
syl2anr |
|- ( ( x e. NN_s /\ y e. NN_s ) -> ( y <_s x <-> ( x -s y ) e. NN0_s ) ) |
14 |
9 13
|
bitrd |
|- ( ( x e. NN_s /\ y e. NN_s ) -> ( 0s <_s ( x -s y ) <-> ( x -s y ) e. NN0_s ) ) |
15 |
14
|
biimpd |
|- ( ( x e. NN_s /\ y e. NN_s ) -> ( 0s <_s ( x -s y ) -> ( x -s y ) e. NN0_s ) ) |
16 |
|
breq2 |
|- ( N = ( x -s y ) -> ( 0s <_s N <-> 0s <_s ( x -s y ) ) ) |
17 |
|
eleq1 |
|- ( N = ( x -s y ) -> ( N e. NN0_s <-> ( x -s y ) e. NN0_s ) ) |
18 |
16 17
|
imbi12d |
|- ( N = ( x -s y ) -> ( ( 0s <_s N -> N e. NN0_s ) <-> ( 0s <_s ( x -s y ) -> ( x -s y ) e. NN0_s ) ) ) |
19 |
15 18
|
syl5ibrcom |
|- ( ( x e. NN_s /\ y e. NN_s ) -> ( N = ( x -s y ) -> ( 0s <_s N -> N e. NN0_s ) ) ) |
20 |
19
|
rexlimivv |
|- ( E. x e. NN_s E. y e. NN_s N = ( x -s y ) -> ( 0s <_s N -> N e. NN0_s ) ) |
21 |
4 20
|
sylbi |
|- ( N e. ZZ_s -> ( 0s <_s N -> N e. NN0_s ) ) |
22 |
21
|
imp |
|- ( ( N e. ZZ_s /\ 0s <_s N ) -> N e. NN0_s ) |
23 |
3 22
|
impbii |
|- ( N e. NN0_s <-> ( N e. ZZ_s /\ 0s <_s N ) ) |