Metamath Proof Explorer


Theorem elnnzs

Description: Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion elnnzs
|- ( N e. NN_s <-> ( N e. ZZ_s /\ 0s 

Proof

Step Hyp Ref Expression
1 nnsno
 |-  ( N e. NN_s -> N e. No )
2 orc
 |-  ( N e. NN_s -> ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) )
3 nnsgt0
 |-  ( N e. NN_s -> 0s 
4 1 2 3 jca31
 |-  ( N e. NN_s -> ( ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) /\ 0s 
5 idd
 |-  ( ( N e. No /\ 0s  ( N e. NN_s -> N e. NN_s ) )
6 negscl
 |-  ( N e. No -> ( -us ` N ) e. No )
7 6 adantr
 |-  ( ( N e. No /\ 0s  ( -us ` N ) e. No )
8 0sno
 |-  0s e. No
9 sltneg
 |-  ( ( 0s e. No /\ N e. No ) -> ( 0s  ( -us ` N ) 
10 8 9 mpan
 |-  ( N e. No -> ( 0s  ( -us ` N ) 
11 negs0s
 |-  ( -us ` 0s ) = 0s
12 11 breq2i
 |-  ( ( -us ` N )  ( -us ` N ) 
13 10 12 bitrdi
 |-  ( N e. No -> ( 0s  ( -us ` N ) 
14 13 biimpa
 |-  ( ( N e. No /\ 0s  ( -us ` N ) 
15 sltasym
 |-  ( ( ( -us ` N ) e. No /\ 0s e. No ) -> ( ( -us ` N )  -. 0s 
16 8 15 mpan2
 |-  ( ( -us ` N ) e. No -> ( ( -us ` N )  -. 0s 
17 7 14 16 sylc
 |-  ( ( N e. No /\ 0s  -. 0s 
18 nnsgt0
 |-  ( ( -us ` N ) e. NN_s -> 0s 
19 17 18 nsyl
 |-  ( ( N e. No /\ 0s  -. ( -us ` N ) e. NN_s )
20 sgt0ne0
 |-  ( 0s  N =/= 0s )
21 20 adantl
 |-  ( ( N e. No /\ 0s  N =/= 0s )
22 21 neneqd
 |-  ( ( N e. No /\ 0s  -. N = 0s )
23 ioran
 |-  ( -. ( ( -us ` N ) e. NN_s \/ N = 0s ) <-> ( -. ( -us ` N ) e. NN_s /\ -. N = 0s ) )
24 19 22 23 sylanbrc
 |-  ( ( N e. No /\ 0s  -. ( ( -us ` N ) e. NN_s \/ N = 0s ) )
25 24 pm2.21d
 |-  ( ( N e. No /\ 0s  ( ( ( -us ` N ) e. NN_s \/ N = 0s ) -> N e. NN_s ) )
26 5 25 jaod
 |-  ( ( N e. No /\ 0s  ( ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) -> N e. NN_s ) )
27 26 ex
 |-  ( N e. No -> ( 0s  ( ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) -> N e. NN_s ) ) )
28 27 com23
 |-  ( N e. No -> ( ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) -> ( 0s  N e. NN_s ) ) )
29 28 imp31
 |-  ( ( ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) /\ 0s  N e. NN_s )
30 4 29 impbii
 |-  ( N e. NN_s <-> ( ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) /\ 0s 
31 elzs2
 |-  ( N e. ZZ_s <-> ( N e. No /\ ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) )
32 3orcomb
 |-  ( ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) <-> ( N e. NN_s \/ ( -us ` N ) e. NN_s \/ N = 0s ) )
33 3orass
 |-  ( ( N e. NN_s \/ ( -us ` N ) e. NN_s \/ N = 0s ) <-> ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) )
34 32 33 bitri
 |-  ( ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) <-> ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) )
35 34 anbi2i
 |-  ( ( N e. No /\ ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) <-> ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) )
36 31 35 bitri
 |-  ( N e. ZZ_s <-> ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) )
37 36 anbi1i
 |-  ( ( N e. ZZ_s /\ 0s  ( ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) /\ 0s 
38 30 37 bitr4i
 |-  ( N e. NN_s <-> ( N e. ZZ_s /\ 0s