| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnsno |
|- ( N e. NN_s -> N e. No ) |
| 2 |
|
orc |
|- ( N e. NN_s -> ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
| 3 |
|
nnsgt0 |
|- ( N e. NN_s -> 0s |
| 4 |
1 2 3
|
jca31 |
|- ( N e. NN_s -> ( ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) /\ 0s |
| 5 |
|
idd |
|- ( ( N e. No /\ 0s ( N e. NN_s -> N e. NN_s ) ) |
| 6 |
|
negscl |
|- ( N e. No -> ( -us ` N ) e. No ) |
| 7 |
6
|
adantr |
|- ( ( N e. No /\ 0s ( -us ` N ) e. No ) |
| 8 |
|
0sno |
|- 0s e. No |
| 9 |
|
sltneg |
|- ( ( 0s e. No /\ N e. No ) -> ( 0s ( -us ` N ) |
| 10 |
8 9
|
mpan |
|- ( N e. No -> ( 0s ( -us ` N ) |
| 11 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
| 12 |
11
|
breq2i |
|- ( ( -us ` N ) ( -us ` N ) |
| 13 |
10 12
|
bitrdi |
|- ( N e. No -> ( 0s ( -us ` N ) |
| 14 |
13
|
biimpa |
|- ( ( N e. No /\ 0s ( -us ` N ) |
| 15 |
|
sltasym |
|- ( ( ( -us ` N ) e. No /\ 0s e. No ) -> ( ( -us ` N ) -. 0s |
| 16 |
8 15
|
mpan2 |
|- ( ( -us ` N ) e. No -> ( ( -us ` N ) -. 0s |
| 17 |
7 14 16
|
sylc |
|- ( ( N e. No /\ 0s -. 0s |
| 18 |
|
nnsgt0 |
|- ( ( -us ` N ) e. NN_s -> 0s |
| 19 |
17 18
|
nsyl |
|- ( ( N e. No /\ 0s -. ( -us ` N ) e. NN_s ) |
| 20 |
|
sgt0ne0 |
|- ( 0s N =/= 0s ) |
| 21 |
20
|
adantl |
|- ( ( N e. No /\ 0s N =/= 0s ) |
| 22 |
21
|
neneqd |
|- ( ( N e. No /\ 0s -. N = 0s ) |
| 23 |
|
ioran |
|- ( -. ( ( -us ` N ) e. NN_s \/ N = 0s ) <-> ( -. ( -us ` N ) e. NN_s /\ -. N = 0s ) ) |
| 24 |
19 22 23
|
sylanbrc |
|- ( ( N e. No /\ 0s -. ( ( -us ` N ) e. NN_s \/ N = 0s ) ) |
| 25 |
24
|
pm2.21d |
|- ( ( N e. No /\ 0s ( ( ( -us ` N ) e. NN_s \/ N = 0s ) -> N e. NN_s ) ) |
| 26 |
5 25
|
jaod |
|- ( ( N e. No /\ 0s ( ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) -> N e. NN_s ) ) |
| 27 |
26
|
ex |
|- ( N e. No -> ( 0s ( ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) -> N e. NN_s ) ) ) |
| 28 |
27
|
com23 |
|- ( N e. No -> ( ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) -> ( 0s N e. NN_s ) ) ) |
| 29 |
28
|
imp31 |
|- ( ( ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) /\ 0s N e. NN_s ) |
| 30 |
4 29
|
impbii |
|- ( N e. NN_s <-> ( ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) /\ 0s |
| 31 |
|
elzs2 |
|- ( N e. ZZ_s <-> ( N e. No /\ ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) ) |
| 32 |
|
3orcomb |
|- ( ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) <-> ( N e. NN_s \/ ( -us ` N ) e. NN_s \/ N = 0s ) ) |
| 33 |
|
3orass |
|- ( ( N e. NN_s \/ ( -us ` N ) e. NN_s \/ N = 0s ) <-> ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
| 34 |
32 33
|
bitri |
|- ( ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) <-> ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
| 35 |
34
|
anbi2i |
|- ( ( N e. No /\ ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) <-> ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) ) |
| 36 |
31 35
|
bitri |
|- ( N e. ZZ_s <-> ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) ) |
| 37 |
36
|
anbi1i |
|- ( ( N e. ZZ_s /\ 0s ( ( N e. No /\ ( N e. NN_s \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) /\ 0s |
| 38 |
30 37
|
bitr4i |
|- ( N e. NN_s <-> ( N e. ZZ_s /\ 0s |