Step |
Hyp |
Ref |
Expression |
1 |
|
elzs2 |
|- ( N e. ZZ_s <-> ( N e. No /\ ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) ) |
2 |
|
3orass |
|- ( ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) <-> ( N e. NN_s \/ ( N = 0s \/ ( -us ` N ) e. NN_s ) ) ) |
3 |
|
eln0s |
|- ( ( -us ` N ) e. NN0_s <-> ( ( -us ` N ) e. NN_s \/ ( -us ` N ) = 0s ) ) |
4 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
5 |
4
|
eqeq2i |
|- ( ( -us ` N ) = ( -us ` 0s ) <-> ( -us ` N ) = 0s ) |
6 |
|
0sno |
|- 0s e. No |
7 |
|
negs11 |
|- ( ( N e. No /\ 0s e. No ) -> ( ( -us ` N ) = ( -us ` 0s ) <-> N = 0s ) ) |
8 |
6 7
|
mpan2 |
|- ( N e. No -> ( ( -us ` N ) = ( -us ` 0s ) <-> N = 0s ) ) |
9 |
5 8
|
bitr3id |
|- ( N e. No -> ( ( -us ` N ) = 0s <-> N = 0s ) ) |
10 |
9
|
orbi2d |
|- ( N e. No -> ( ( ( -us ` N ) e. NN_s \/ ( -us ` N ) = 0s ) <-> ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
11 |
3 10
|
bitrid |
|- ( N e. No -> ( ( -us ` N ) e. NN0_s <-> ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
12 |
|
orcom |
|- ( ( ( -us ` N ) e. NN_s \/ N = 0s ) <-> ( N = 0s \/ ( -us ` N ) e. NN_s ) ) |
13 |
11 12
|
bitrdi |
|- ( N e. No -> ( ( -us ` N ) e. NN0_s <-> ( N = 0s \/ ( -us ` N ) e. NN_s ) ) ) |
14 |
13
|
orbi2d |
|- ( N e. No -> ( ( N e. NN_s \/ ( -us ` N ) e. NN0_s ) <-> ( N e. NN_s \/ ( N = 0s \/ ( -us ` N ) e. NN_s ) ) ) ) |
15 |
2 14
|
bitr4id |
|- ( N e. No -> ( ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) <-> ( N e. NN_s \/ ( -us ` N ) e. NN0_s ) ) ) |
16 |
15
|
pm5.32i |
|- ( ( N e. No /\ ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) <-> ( N e. No /\ ( N e. NN_s \/ ( -us ` N ) e. NN0_s ) ) ) |
17 |
1 16
|
bitri |
|- ( N e. ZZ_s <-> ( N e. No /\ ( N e. NN_s \/ ( -us ` N ) e. NN0_s ) ) ) |