Step |
Hyp |
Ref |
Expression |
1 |
|
zno |
|- ( N e. ZZ_s -> N e. No ) |
2 |
1
|
adantr |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> N e. No ) |
3 |
|
zno |
|- ( M e. ZZ_s -> M e. No ) |
4 |
3
|
adantl |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> M e. No ) |
5 |
2 4
|
subsge0d |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> ( 0s <_s ( N -s M ) <-> M <_s N ) ) |
6 |
|
simpl |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> N e. ZZ_s ) |
7 |
|
simpr |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> M e. ZZ_s ) |
8 |
6 7
|
zsubscld |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> ( N -s M ) e. ZZ_s ) |
9 |
8
|
biantrurd |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> ( 0s <_s ( N -s M ) <-> ( ( N -s M ) e. ZZ_s /\ 0s <_s ( N -s M ) ) ) ) |
10 |
5 9
|
bitr3d |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> ( M <_s N <-> ( ( N -s M ) e. ZZ_s /\ 0s <_s ( N -s M ) ) ) ) |
11 |
10
|
ancoms |
|- ( ( M e. ZZ_s /\ N e. ZZ_s ) -> ( M <_s N <-> ( ( N -s M ) e. ZZ_s /\ 0s <_s ( N -s M ) ) ) ) |
12 |
|
eln0zs |
|- ( ( N -s M ) e. NN0_s <-> ( ( N -s M ) e. ZZ_s /\ 0s <_s ( N -s M ) ) ) |
13 |
11 12
|
bitr4di |
|- ( ( M e. ZZ_s /\ N e. ZZ_s ) -> ( M <_s N <-> ( N -s M ) e. NN0_s ) ) |