| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zno |
|- ( N e. ZZ_s -> N e. No ) |
| 2 |
1
|
adantr |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> N e. No ) |
| 3 |
|
zno |
|- ( M e. ZZ_s -> M e. No ) |
| 4 |
3
|
adantl |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> M e. No ) |
| 5 |
2 4
|
subsge0d |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> ( 0s <_s ( N -s M ) <-> M <_s N ) ) |
| 6 |
|
simpl |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> N e. ZZ_s ) |
| 7 |
|
simpr |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> M e. ZZ_s ) |
| 8 |
6 7
|
zsubscld |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> ( N -s M ) e. ZZ_s ) |
| 9 |
8
|
biantrurd |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> ( 0s <_s ( N -s M ) <-> ( ( N -s M ) e. ZZ_s /\ 0s <_s ( N -s M ) ) ) ) |
| 10 |
5 9
|
bitr3d |
|- ( ( N e. ZZ_s /\ M e. ZZ_s ) -> ( M <_s N <-> ( ( N -s M ) e. ZZ_s /\ 0s <_s ( N -s M ) ) ) ) |
| 11 |
10
|
ancoms |
|- ( ( M e. ZZ_s /\ N e. ZZ_s ) -> ( M <_s N <-> ( ( N -s M ) e. ZZ_s /\ 0s <_s ( N -s M ) ) ) ) |
| 12 |
|
eln0zs |
|- ( ( N -s M ) e. NN0_s <-> ( ( N -s M ) e. ZZ_s /\ 0s <_s ( N -s M ) ) ) |
| 13 |
11 12
|
bitr4di |
|- ( ( M e. ZZ_s /\ N e. ZZ_s ) -> ( M <_s N <-> ( N -s M ) e. NN0_s ) ) |