Metamath Proof Explorer


Theorem zn0subs

Description: The non-negative difference of surreal integers is a non-negative integer. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion zn0subs M s N s M s N N - s M 0s

Proof

Step Hyp Ref Expression
1 zno N s N No
2 1 adantr N s M s N No
3 zno M s M No
4 3 adantl N s M s M No
5 2 4 subsge0d N s M s 0 s s N - s M M s N
6 simpl N s M s N s
7 simpr N s M s M s
8 6 7 zsubscld N s M s N - s M s
9 8 biantrurd N s M s 0 s s N - s M N - s M s 0 s s N - s M
10 5 9 bitr3d N s M s M s N N - s M s 0 s s N - s M
11 10 ancoms M s N s M s N N - s M s 0 s s N - s M
12 eln0zs N - s M 0s N - s M s 0 s s N - s M
13 11 12 bitr4di M s N s M s N N - s M 0s