Metamath Proof Explorer


Theorem elznns

Description: Surreal integer property expressed in terms of positive integers and non-negative integers. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion elznns N s N No N s + s N 0s

Proof

Step Hyp Ref Expression
1 elzs2 N s N No N s N = 0 s + s N s
2 3orass N s N = 0 s + s N s N s N = 0 s + s N s
3 eln0s + s N 0s + s N s + s N = 0 s
4 negs0s + s 0 s = 0 s
5 4 eqeq2i + s N = + s 0 s + s N = 0 s
6 0sno 0 s No
7 negs11 N No 0 s No + s N = + s 0 s N = 0 s
8 6 7 mpan2 N No + s N = + s 0 s N = 0 s
9 5 8 bitr3id N No + s N = 0 s N = 0 s
10 9 orbi2d N No + s N s + s N = 0 s + s N s N = 0 s
11 3 10 bitrid N No + s N 0s + s N s N = 0 s
12 orcom + s N s N = 0 s N = 0 s + s N s
13 11 12 bitrdi N No + s N 0s N = 0 s + s N s
14 13 orbi2d N No N s + s N 0s N s N = 0 s + s N s
15 2 14 bitr4id N No N s N = 0 s + s N s N s + s N 0s
16 15 pm5.32i N No N s N = 0 s + s N s N No N s + s N 0s
17 1 16 bitri N s N No N s + s N 0s