Metamath Proof Explorer


Theorem elnnzs

Description: Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion elnnzs N s N s 0 s < s N

Proof

Step Hyp Ref Expression
1 nnsno N s N No
2 orc N s N s + s N s N = 0 s
3 nnsgt0 N s 0 s < s N
4 1 2 3 jca31 N s N No N s + s N s N = 0 s 0 s < s N
5 idd N No 0 s < s N N s N s
6 negscl N No + s N No
7 6 adantr N No 0 s < s N + s N No
8 0sno 0 s No
9 sltneg 0 s No N No 0 s < s N + s N < s + s 0 s
10 8 9 mpan N No 0 s < s N + s N < s + s 0 s
11 negs0s + s 0 s = 0 s
12 11 breq2i + s N < s + s 0 s + s N < s 0 s
13 10 12 bitrdi N No 0 s < s N + s N < s 0 s
14 13 biimpa N No 0 s < s N + s N < s 0 s
15 sltasym + s N No 0 s No + s N < s 0 s ¬ 0 s < s + s N
16 8 15 mpan2 + s N No + s N < s 0 s ¬ 0 s < s + s N
17 7 14 16 sylc N No 0 s < s N ¬ 0 s < s + s N
18 nnsgt0 + s N s 0 s < s + s N
19 17 18 nsyl N No 0 s < s N ¬ + s N s
20 sgt0ne0 0 s < s N N 0 s
21 20 adantl N No 0 s < s N N 0 s
22 21 neneqd N No 0 s < s N ¬ N = 0 s
23 ioran ¬ + s N s N = 0 s ¬ + s N s ¬ N = 0 s
24 19 22 23 sylanbrc N No 0 s < s N ¬ + s N s N = 0 s
25 24 pm2.21d N No 0 s < s N + s N s N = 0 s N s
26 5 25 jaod N No 0 s < s N N s + s N s N = 0 s N s
27 26 ex N No 0 s < s N N s + s N s N = 0 s N s
28 27 com23 N No N s + s N s N = 0 s 0 s < s N N s
29 28 imp31 N No N s + s N s N = 0 s 0 s < s N N s
30 4 29 impbii N s N No N s + s N s N = 0 s 0 s < s N
31 elzs2 N s N No N s N = 0 s + s N s
32 3orcomb N s N = 0 s + s N s N s + s N s N = 0 s
33 3orass N s + s N s N = 0 s N s + s N s N = 0 s
34 32 33 bitri N s N = 0 s + s N s N s + s N s N = 0 s
35 34 anbi2i N No N s N = 0 s + s N s N No N s + s N s N = 0 s
36 31 35 bitri N s N No N s + s N s N = 0 s
37 36 anbi1i N s 0 s < s N N No N s + s N s N = 0 s 0 s < s N
38 30 37 bitr4i N s N s 0 s < s N