| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znumd.1 |
|- ( ph -> Z e. ZZ ) |
| 2 |
|
zq |
|- ( Z e. ZZ -> Z e. QQ ) |
| 3 |
1 2
|
syl |
|- ( ph -> Z e. QQ ) |
| 4 |
|
1nn |
|- 1 e. NN |
| 5 |
4
|
a1i |
|- ( ph -> 1 e. NN ) |
| 6 |
|
gcd1 |
|- ( Z e. ZZ -> ( Z gcd 1 ) = 1 ) |
| 7 |
1 6
|
syl |
|- ( ph -> ( Z gcd 1 ) = 1 ) |
| 8 |
1
|
zcnd |
|- ( ph -> Z e. CC ) |
| 9 |
8
|
div1d |
|- ( ph -> ( Z / 1 ) = Z ) |
| 10 |
9
|
eqcomd |
|- ( ph -> Z = ( Z / 1 ) ) |
| 11 |
|
qnumdenbi |
|- ( ( Z e. QQ /\ Z e. ZZ /\ 1 e. NN ) -> ( ( ( Z gcd 1 ) = 1 /\ Z = ( Z / 1 ) ) <-> ( ( numer ` Z ) = Z /\ ( denom ` Z ) = 1 ) ) ) |
| 12 |
11
|
biimpa |
|- ( ( ( Z e. QQ /\ Z e. ZZ /\ 1 e. NN ) /\ ( ( Z gcd 1 ) = 1 /\ Z = ( Z / 1 ) ) ) -> ( ( numer ` Z ) = Z /\ ( denom ` Z ) = 1 ) ) |
| 13 |
3 1 5 7 10 12
|
syl32anc |
|- ( ph -> ( ( numer ` Z ) = Z /\ ( denom ` Z ) = 1 ) ) |
| 14 |
13
|
simpld |
|- ( ph -> ( numer ` Z ) = Z ) |