| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringlpirlem.i |
|- ( ph -> I e. ( LIdeal ` ZZring ) ) |
| 2 |
|
zringlpirlem.n0 |
|- ( ph -> I =/= { 0 } ) |
| 3 |
|
zringlpirlem.g |
|- G = inf ( ( I i^i NN ) , RR , < ) |
| 4 |
|
inss2 |
|- ( I i^i NN ) C_ NN |
| 5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 6 |
4 5
|
sseqtri |
|- ( I i^i NN ) C_ ( ZZ>= ` 1 ) |
| 7 |
1 2
|
zringlpirlem1 |
|- ( ph -> ( I i^i NN ) =/= (/) ) |
| 8 |
|
infssuzcl |
|- ( ( ( I i^i NN ) C_ ( ZZ>= ` 1 ) /\ ( I i^i NN ) =/= (/) ) -> inf ( ( I i^i NN ) , RR , < ) e. ( I i^i NN ) ) |
| 9 |
6 7 8
|
sylancr |
|- ( ph -> inf ( ( I i^i NN ) , RR , < ) e. ( I i^i NN ) ) |
| 10 |
9
|
elin1d |
|- ( ph -> inf ( ( I i^i NN ) , RR , < ) e. I ) |
| 11 |
3 10
|
eqeltrid |
|- ( ph -> G e. I ) |