Metamath Proof Explorer
		
		
		
		Description:  Alternate proof of 0cn using ax-resscn , ax-addrcl , ax-rnegex ,
     ax-cnre instead of ax-icn , ax-addcl , ax-mulcl , ax-i2m1 .
     Version of 0cnALT using ax-1cn instead of ax-icn .  (Contributed by Steven Nguyen, 7-Jan-2022)  (Proof modification is discouraged.)
     (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 0cnALT3 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re |  | 
						
							| 2 | 1 | recni |  |