Metamath Proof Explorer


Theorem elre0re

Description: Specialized version of 0red without using ax-1cn and ax-cnre . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Assertion elre0re A 0

Proof

Step Hyp Ref Expression
1 ax-rnegex A x A + x = 0
2 readdcl A x A + x
3 eleq1 A + x = 0 A + x 0
4 2 3 syl5ibcom A x A + x = 0 0
5 4 rexlimdva A x A + x = 0 0
6 1 5 mpd A 0