Description: Specialized version of 0red without using ax-1cn and ax-cnre . (Contributed by Steven Nguyen, 28-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | elre0re | |- ( A e. RR -> 0 e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex | |- ( A e. RR -> E. x e. RR ( A + x ) = 0 ) |
|
2 | readdcl | |- ( ( A e. RR /\ x e. RR ) -> ( A + x ) e. RR ) |
|
3 | eleq1 | |- ( ( A + x ) = 0 -> ( ( A + x ) e. RR <-> 0 e. RR ) ) |
|
4 | 2 3 | syl5ibcom | |- ( ( A e. RR /\ x e. RR ) -> ( ( A + x ) = 0 -> 0 e. RR ) ) |
5 | 4 | rexlimdva | |- ( A e. RR -> ( E. x e. RR ( A + x ) = 0 -> 0 e. RR ) ) |
6 | 1 5 | mpd | |- ( A e. RR -> 0 e. RR ) |