Metamath Proof Explorer


Theorem elre0re

Description: Specialized version of 0red without using ax-1cn and ax-cnre . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Assertion elre0re
|- ( A e. RR -> 0 e. RR )

Proof

Step Hyp Ref Expression
1 ax-rnegex
 |-  ( A e. RR -> E. x e. RR ( A + x ) = 0 )
2 readdcl
 |-  ( ( A e. RR /\ x e. RR ) -> ( A + x ) e. RR )
3 eleq1
 |-  ( ( A + x ) = 0 -> ( ( A + x ) e. RR <-> 0 e. RR ) )
4 2 3 syl5ibcom
 |-  ( ( A e. RR /\ x e. RR ) -> ( ( A + x ) = 0 -> 0 e. RR ) )
5 4 rexlimdva
 |-  ( A e. RR -> ( E. x e. RR ( A + x ) = 0 -> 0 e. RR ) )
6 1 5 mpd
 |-  ( A e. RR -> 0 e. RR )