Metamath Proof Explorer


Theorem 0cnf

Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion 0cnf Cn

Proof

Step Hyp Ref Expression
1 f0 :
2 cnv0 -1=
3 2 imaeq1i -1x=x
4 0ima x=
5 3 4 eqtri -1x=
6 0ex V
7 6 snid
8 5 7 eqeltri -1x
9 8 rgenw x-1x
10 sn0topon TopOn
11 iscn TopOnTopOnCn:x-1x
12 10 10 11 mp2an Cn:x-1x
13 1 9 12 mpbir2an Cn