Metamath Proof Explorer


Theorem 0conngr

Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion 0conngr ConnGraph

Proof

Step Hyp Ref Expression
1 ral0 knfpfkPathsOnnp
2 0ex V
3 vtxval0 Vtx=
4 3 eqcomi =Vtx
5 4 isconngr VConnGraphknfpfkPathsOnnp
6 2 5 ax-mp ConnGraphknfpfkPathsOnnp
7 1 6 mpbir ConnGraph