Metamath Proof Explorer


Definition df-conngr

Description: Define the class of all connected graphs. A graph is calledconnected if there is a path between every pair of (distinct) vertices. The distinctness of the vertices is not necessary for the definition, because there is always a path (of length 0) from a vertex to itself, see 0pthonv and dfconngr1 . (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion df-conngr ConnGraph=g|[˙Vtxg/v]˙kvnvfpfkPathsOngnp

Detailed syntax breakdown

Step Hyp Ref Expression
0 cconngr classConnGraph
1 vg setvarg
2 cvtx classVtx
3 1 cv setvarg
4 3 2 cfv classVtxg
5 vv setvarv
6 vk setvark
7 5 cv setvarv
8 vn setvarn
9 vf setvarf
10 vp setvarp
11 9 cv setvarf
12 6 cv setvark
13 cpthson classPathsOn
14 3 13 cfv classPathsOng
15 8 cv setvarn
16 12 15 14 co classkPathsOngn
17 10 cv setvarp
18 11 17 16 wbr wfffkPathsOngnp
19 18 10 wex wffpfkPathsOngnp
20 19 9 wex wfffpfkPathsOngnp
21 20 8 7 wral wffnvfpfkPathsOngnp
22 21 6 7 wral wffkvnvfpfkPathsOngnp
23 22 5 4 wsbc wff[˙Vtxg/v]˙kvnvfpfkPathsOngnp
24 23 1 cab classg|[˙Vtxg/v]˙kvnvfpfkPathsOngnp
25 0 24 wceq wffConnGraph=g|[˙Vtxg/v]˙kvnvfpfkPathsOngnp