Metamath Proof Explorer


Theorem 0vconngr

Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion 0vconngr GWVtxG=GConnGraph

Proof

Step Hyp Ref Expression
1 rzal VtxG=kVtxGnVtxGfpfkPathsOnGnp
2 1 adantl GWVtxG=kVtxGnVtxGfpfkPathsOnGnp
3 eqid VtxG=VtxG
4 3 isconngr GWGConnGraphkVtxGnVtxGfpfkPathsOnGnp
5 4 adantr GWVtxG=GConnGraphkVtxGnVtxGfpfkPathsOnGnp
6 2 5 mpbird GWVtxG=GConnGraph