Metamath Proof Explorer


Theorem 0vconngr

Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion 0vconngr ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ ConnGraph )

Proof

Step Hyp Ref Expression
1 rzal ( ( Vtx ‘ 𝐺 ) = ∅ → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 )
2 1 adantl ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 )
3 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
4 3 isconngr ( 𝐺𝑊 → ( 𝐺 ∈ ConnGraph ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) )
5 4 adantr ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ ConnGraph ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑓𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝐺 ) 𝑛 ) 𝑝 ) )
6 2 5 mpbird ( ( 𝐺𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ ConnGraph )