Metamath Proof Explorer


Theorem 1conngr

Description: A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion 1conngr GWVtxG=NGConnGraph

Proof

Step Hyp Ref Expression
1 snidg NVNN
2 1 adantr NVGWVtxG=NNN
3 eleq2 VtxG=NNVtxGNN
4 3 ad2antll NVGWVtxG=NNVtxGNN
5 2 4 mpbird NVGWVtxG=NNVtxG
6 eqid VtxG=VtxG
7 6 0pthonv NVtxGfpfNPathsOnGNp
8 5 7 syl NVGWVtxG=NfpfNPathsOnGNp
9 oveq2 n=NNPathsOnGn=NPathsOnGN
10 9 breqd n=NfNPathsOnGnpfNPathsOnGNp
11 10 2exbidv n=NfpfNPathsOnGnpfpfNPathsOnGNp
12 11 ralsng NVnNfpfNPathsOnGnpfpfNPathsOnGNp
13 12 adantr NVGWVtxG=NnNfpfNPathsOnGnpfpfNPathsOnGNp
14 8 13 mpbird NVGWVtxG=NnNfpfNPathsOnGnp
15 oveq1 k=NkPathsOnGn=NPathsOnGn
16 15 breqd k=NfkPathsOnGnpfNPathsOnGnp
17 16 2exbidv k=NfpfkPathsOnGnpfpfNPathsOnGnp
18 17 ralbidv k=NnNfpfkPathsOnGnpnNfpfNPathsOnGnp
19 18 ralsng NVkNnNfpfkPathsOnGnpnNfpfNPathsOnGnp
20 19 adantr NVGWVtxG=NkNnNfpfkPathsOnGnpnNfpfNPathsOnGnp
21 14 20 mpbird NVGWVtxG=NkNnNfpfkPathsOnGnp
22 raleq VtxG=NnVtxGfpfkPathsOnGnpnNfpfkPathsOnGnp
23 22 raleqbi1dv VtxG=NkVtxGnVtxGfpfkPathsOnGnpkNnNfpfkPathsOnGnp
24 23 ad2antll NVGWVtxG=NkVtxGnVtxGfpfkPathsOnGnpkNnNfpfkPathsOnGnp
25 21 24 mpbird NVGWVtxG=NkVtxGnVtxGfpfkPathsOnGnp
26 6 isconngr GWGConnGraphkVtxGnVtxGfpfkPathsOnGnp
27 26 ad2antrl NVGWVtxG=NGConnGraphkVtxGnVtxGfpfkPathsOnGnp
28 25 27 mpbird NVGWVtxG=NGConnGraph
29 28 ex NVGWVtxG=NGConnGraph
30 snprc ¬NVN=
31 eqeq2 N=VtxG=NVtxG=
32 31 anbi2d N=GWVtxG=NGWVtxG=
33 0vconngr GWVtxG=GConnGraph
34 32 33 syl6bi N=GWVtxG=NGConnGraph
35 30 34 sylbi ¬NVGWVtxG=NGConnGraph
36 29 35 pm2.61i GWVtxG=NGConnGraph