Metamath Proof Explorer
		
		
		Theorem 0er
		Description:  The empty set is an equivalence relation on the empty set.  (Contributed by Mario Carneiro, 5-Sep-2015)  (Proof shortened by AV, 1-May-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 0er |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rel0 |  | 
						
							| 2 |  | df-br |  | 
						
							| 3 |  | noel |  | 
						
							| 4 | 3 | pm2.21i |  | 
						
							| 5 | 2 4 | sylbi |  | 
						
							| 6 | 3 | pm2.21i |  | 
						
							| 7 | 2 6 | sylbi |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | noel |  | 
						
							| 10 |  | noel |  | 
						
							| 11 | 9 10 | 2false |  | 
						
							| 12 |  | df-br |  | 
						
							| 13 | 11 12 | bitr4i |  | 
						
							| 14 | 1 5 8 13 | iseri |  |