Metamath Proof Explorer


Theorem 0er

Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 1-May-2021)

Ref Expression
Assertion 0er Er

Proof

Step Hyp Ref Expression
1 rel0 Rel
2 df-br xyxy
3 noel ¬xy
4 3 pm2.21i xyyx
5 2 4 sylbi xyyx
6 3 pm2.21i xyxz
7 2 6 sylbi xyxz
8 7 adantr xyyzxz
9 noel ¬x
10 noel ¬xx
11 9 10 2false xxx
12 df-br xxxx
13 11 12 bitr4i xxx
14 1 5 8 13 iseri Er