Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 0er | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 | |
|
2 | df-br | |
|
3 | noel | |
|
4 | 3 | pm2.21i | |
5 | 2 4 | sylbi | |
6 | 3 | pm2.21i | |
7 | 2 6 | sylbi | |
8 | 7 | adantr | |
9 | noel | |
|
10 | noel | |
|
11 | 9 10 | 2false | |
12 | df-br | |
|
13 | 11 12 | bitr4i | |
14 | 1 5 8 13 | iseri | |