Metamath Proof Explorer


Theorem 0func

Description: The functor from the empty category. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypothesis 0func.c φ C Cat
Assertion 0func φ Func C =

Proof

Step Hyp Ref Expression
1 0func.c φ C Cat
2 relfunc Rel Func C
3 0ex V
4 3 3 relsnop Rel
5 base0 = Base
6 eqid Base C = Base C
7 eqid Hom = Hom
8 eqid Hom C = Hom C
9 eqid Id = Id
10 eqid Id C = Id C
11 eqid comp = comp
12 eqid comp C = comp C
13 0cat Cat
14 13 a1i φ Cat
15 5 6 7 8 9 10 11 12 14 1 isfunc φ f Func C g f : Base C g z × f 1 st z Hom C f 2 nd z Hom z x x g x Id x = Id C f x y z m x Hom y n y Hom z x g z n x y comp z m = y g z n f x f y comp C f z x g y m
16 f0bi f : Base C f =
17 ral0 x y x g y : x Hom y f x Hom C f y
18 5 funcf2lem2 g z × f 1 st z Hom C f 2 nd z Hom z g Fn × x y x g y : x Hom y f x Hom C f y
19 17 18 mpbiran2 g z × f 1 st z Hom C f 2 nd z Hom z g Fn ×
20 0xp × =
21 20 fneq2i g Fn × g Fn
22 fn0 g Fn g =
23 19 21 22 3bitri g z × f 1 st z Hom C f 2 nd z Hom z g =
24 ral0 x x g x Id x = Id C f x y z m x Hom y n y Hom z x g z n x y comp z m = y g z n f x f y comp C f z x g y m
25 15 16 23 24 0funclem φ f Func C g f = g =
26 brsnop V V f g f = g =
27 3 3 26 mp2an f g f = g =
28 25 27 bitr4di φ f Func C g f g
29 2 4 28 eqbrrdiv φ Func C =