Description: The functor from the empty category. (Contributed by Zhi Wang, 7-Oct-2025) (Proof shortened by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0func.c | |- ( ph -> C e. Cat ) |
|
| Assertion | 0func | |- ( ph -> ( (/) Func C ) = { <. (/) , (/) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0func.c | |- ( ph -> C e. Cat ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 2 | a1i | |- ( ph -> (/) e. _V ) |
| 4 | base0 | |- (/) = ( Base ` (/) ) |
|
| 5 | 4 | a1i | |- ( ph -> (/) = ( Base ` (/) ) ) |
| 6 | 3 5 1 | 0funcg | |- ( ph -> ( (/) Func C ) = { <. (/) , (/) >. } ) |