| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0func.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
relfunc |
|- Rel ( (/) Func C ) |
| 3 |
|
0ex |
|- (/) e. _V |
| 4 |
3 3
|
relsnop |
|- Rel { <. (/) , (/) >. } |
| 5 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 7 |
|
eqid |
|- ( Hom ` (/) ) = ( Hom ` (/) ) |
| 8 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 9 |
|
eqid |
|- ( Id ` (/) ) = ( Id ` (/) ) |
| 10 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 11 |
|
eqid |
|- ( comp ` (/) ) = ( comp ` (/) ) |
| 12 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 13 |
|
0cat |
|- (/) e. Cat |
| 14 |
13
|
a1i |
|- ( ph -> (/) e. Cat ) |
| 15 |
5 6 7 8 9 10 11 12 14 1
|
isfunc |
|- ( ph -> ( f ( (/) Func C ) g <-> ( f : (/) --> ( Base ` C ) /\ g e. X_ z e. ( (/) X. (/) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` C ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` (/) ) ` z ) ) /\ A. x e. (/) ( ( ( x g x ) ` ( ( Id ` (/) ) ` x ) ) = ( ( Id ` C ) ` ( f ` x ) ) /\ A. y e. (/) A. z e. (/) A. m e. ( x ( Hom ` (/) ) y ) A. n e. ( y ( Hom ` (/) ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` (/) ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` C ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) ) ) |
| 16 |
|
f0bi |
|- ( f : (/) --> ( Base ` C ) <-> f = (/) ) |
| 17 |
|
ral0 |
|- A. x e. (/) A. y e. (/) ( x g y ) : ( x ( Hom ` (/) ) y ) --> ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) |
| 18 |
5
|
funcf2lem2 |
|- ( g e. X_ z e. ( (/) X. (/) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` C ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` (/) ) ` z ) ) <-> ( g Fn ( (/) X. (/) ) /\ A. x e. (/) A. y e. (/) ( x g y ) : ( x ( Hom ` (/) ) y ) --> ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) ) ) |
| 19 |
17 18
|
mpbiran2 |
|- ( g e. X_ z e. ( (/) X. (/) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` C ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` (/) ) ` z ) ) <-> g Fn ( (/) X. (/) ) ) |
| 20 |
|
0xp |
|- ( (/) X. (/) ) = (/) |
| 21 |
20
|
fneq2i |
|- ( g Fn ( (/) X. (/) ) <-> g Fn (/) ) |
| 22 |
|
fn0 |
|- ( g Fn (/) <-> g = (/) ) |
| 23 |
19 21 22
|
3bitri |
|- ( g e. X_ z e. ( (/) X. (/) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` C ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` (/) ) ` z ) ) <-> g = (/) ) |
| 24 |
|
ral0 |
|- A. x e. (/) ( ( ( x g x ) ` ( ( Id ` (/) ) ` x ) ) = ( ( Id ` C ) ` ( f ` x ) ) /\ A. y e. (/) A. z e. (/) A. m e. ( x ( Hom ` (/) ) y ) A. n e. ( y ( Hom ` (/) ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` (/) ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` C ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) |
| 25 |
15 16 23 24
|
0funclem |
|- ( ph -> ( f ( (/) Func C ) g <-> ( f = (/) /\ g = (/) ) ) ) |
| 26 |
|
brsnop |
|- ( ( (/) e. _V /\ (/) e. _V ) -> ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) ) |
| 27 |
3 3 26
|
mp2an |
|- ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) |
| 28 |
25 27
|
bitr4di |
|- ( ph -> ( f ( (/) Func C ) g <-> f { <. (/) , (/) >. } g ) ) |
| 29 |
2 4 28
|
eqbrrdiv |
|- ( ph -> ( (/) Func C ) = { <. (/) , (/) >. } ) |