Metamath Proof Explorer


Theorem 0funclem

Description: Lemma for 0func . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses 0funclem.1
|- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) )
0funclem.2
|- ( ch <-> et )
0funclem.3
|- ( th <-> ze )
0funclem.4
|- ta
Assertion 0funclem
|- ( ph -> ( ps <-> ( et /\ ze ) ) )

Proof

Step Hyp Ref Expression
1 0funclem.1
 |-  ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) )
2 0funclem.2
 |-  ( ch <-> et )
3 0funclem.3
 |-  ( th <-> ze )
4 0funclem.4
 |-  ta
5 df-3an
 |-  ( ( ch /\ th /\ ta ) <-> ( ( ch /\ th ) /\ ta ) )
6 1 5 bitrdi
 |-  ( ph -> ( ps <-> ( ( ch /\ th ) /\ ta ) ) )
7 6 rbaibd
 |-  ( ( ph /\ ta ) -> ( ps <-> ( ch /\ th ) ) )
8 4 7 mpan2
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
9 2 3 anbi12i
 |-  ( ( ch /\ th ) <-> ( et /\ ze ) )
10 8 9 bitrdi
 |-  ( ph -> ( ps <-> ( et /\ ze ) ) )