Description: Lemma for 0func . (Contributed by Zhi Wang, 7-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0funclem.1 | |- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
|
0funclem.2 | |- ( ch <-> et ) |
||
0funclem.3 | |- ( th <-> ze ) |
||
0funclem.4 | |- ta |
||
Assertion | 0funclem | |- ( ph -> ( ps <-> ( et /\ ze ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0funclem.1 | |- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
|
2 | 0funclem.2 | |- ( ch <-> et ) |
|
3 | 0funclem.3 | |- ( th <-> ze ) |
|
4 | 0funclem.4 | |- ta |
|
5 | df-3an | |- ( ( ch /\ th /\ ta ) <-> ( ( ch /\ th ) /\ ta ) ) |
|
6 | 1 5 | bitrdi | |- ( ph -> ( ps <-> ( ( ch /\ th ) /\ ta ) ) ) |
7 | 6 | rbaibd | |- ( ( ph /\ ta ) -> ( ps <-> ( ch /\ th ) ) ) |
8 | 4 7 | mpan2 | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
9 | 2 3 | anbi12i | |- ( ( ch /\ th ) <-> ( et /\ ze ) ) |
10 | 8 9 | bitrdi | |- ( ph -> ( ps <-> ( et /\ ze ) ) ) |