Description: Lemma for 0funcALT . (Contributed by Zhi Wang, 7-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0funclem.1 | |- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
|
| 0funclem.2 | |- ( ch <-> et ) |
||
| 0funclem.3 | |- ( th <-> ze ) |
||
| 0funclem.4 | |- ta |
||
| Assertion | 0funclem | |- ( ph -> ( ps <-> ( et /\ ze ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0funclem.1 | |- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
|
| 2 | 0funclem.2 | |- ( ch <-> et ) |
|
| 3 | 0funclem.3 | |- ( th <-> ze ) |
|
| 4 | 0funclem.4 | |- ta |
|
| 5 | df-3an | |- ( ( ch /\ th /\ ta ) <-> ( ( ch /\ th ) /\ ta ) ) |
|
| 6 | 1 5 | bitrdi | |- ( ph -> ( ps <-> ( ( ch /\ th ) /\ ta ) ) ) |
| 7 | 6 | rbaibd | |- ( ( ph /\ ta ) -> ( ps <-> ( ch /\ th ) ) ) |
| 8 | 4 7 | mpan2 | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
| 9 | 2 3 | anbi12i | |- ( ( ch /\ th ) <-> ( et /\ ze ) ) |
| 10 | 8 9 | bitrdi | |- ( ph -> ( ps <-> ( et /\ ze ) ) ) |