Metamath Proof Explorer


Theorem 0funclem

Description: Lemma for 0func . (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses 0funclem.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃𝜏 ) ) )
0funclem.2 ( 𝜒𝜂 )
0funclem.3 ( 𝜃𝜁 )
0funclem.4 𝜏
Assertion 0funclem ( 𝜑 → ( 𝜓 ↔ ( 𝜂𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 0funclem.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃𝜏 ) ) )
2 0funclem.2 ( 𝜒𝜂 )
3 0funclem.3 ( 𝜃𝜁 )
4 0funclem.4 𝜏
5 df-3an ( ( 𝜒𝜃𝜏 ) ↔ ( ( 𝜒𝜃 ) ∧ 𝜏 ) )
6 1 5 bitrdi ( 𝜑 → ( 𝜓 ↔ ( ( 𝜒𝜃 ) ∧ 𝜏 ) ) )
7 6 rbaibd ( ( 𝜑𝜏 ) → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
8 4 7 mpan2 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
9 2 3 anbi12i ( ( 𝜒𝜃 ) ↔ ( 𝜂𝜁 ) )
10 8 9 bitrdi ( 𝜑 → ( 𝜓 ↔ ( 𝜂𝜁 ) ) )