Description: Lemma for 0func . (Contributed by Zhi Wang, 7-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0funclem.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) | |
0funclem.2 | ⊢ ( 𝜒 ↔ 𝜂 ) | ||
0funclem.3 | ⊢ ( 𝜃 ↔ 𝜁 ) | ||
0funclem.4 | ⊢ 𝜏 | ||
Assertion | 0funclem | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜂 ∧ 𝜁 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0funclem.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) | |
2 | 0funclem.2 | ⊢ ( 𝜒 ↔ 𝜂 ) | |
3 | 0funclem.3 | ⊢ ( 𝜃 ↔ 𝜁 ) | |
4 | 0funclem.4 | ⊢ 𝜏 | |
5 | df-3an | ⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ↔ ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜏 ) ) | |
6 | 1 5 | bitrdi | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜏 ) ) ) |
7 | 6 | rbaibd | ⊢ ( ( 𝜑 ∧ 𝜏 ) → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
8 | 4 7 | mpan2 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
9 | 2 3 | anbi12i | ⊢ ( ( 𝜒 ∧ 𝜃 ) ↔ ( 𝜂 ∧ 𝜁 ) ) |
10 | 8 9 | bitrdi | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜂 ∧ 𝜁 ) ) ) |