Metamath Proof Explorer


Theorem 0func

Description: The functor from the empty category. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypothesis 0func.c ( 𝜑𝐶 ∈ Cat )
Assertion 0func ( 𝜑 → ( ∅ Func 𝐶 ) = { ⟨ ∅ , ∅ ⟩ } )

Proof

Step Hyp Ref Expression
1 0func.c ( 𝜑𝐶 ∈ Cat )
2 relfunc Rel ( ∅ Func 𝐶 )
3 0ex ∅ ∈ V
4 3 3 relsnop Rel { ⟨ ∅ , ∅ ⟩ }
5 base0 ∅ = ( Base ‘ ∅ )
6 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
7 eqid ( Hom ‘ ∅ ) = ( Hom ‘ ∅ )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 eqid ( Id ‘ ∅ ) = ( Id ‘ ∅ )
10 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
11 eqid ( comp ‘ ∅ ) = ( comp ‘ ∅ )
12 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
13 0cat ∅ ∈ Cat
14 13 a1i ( 𝜑 → ∅ ∈ Cat )
15 5 6 7 8 9 10 11 12 14 1 isfunc ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔 ↔ ( 𝑓 : ∅ ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ∅ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ ∅ ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ ∅ ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ∅ ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) )
16 f0bi ( 𝑓 : ∅ ⟶ ( Base ‘ 𝐶 ) ↔ 𝑓 = ∅ )
17 ral0 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ⟶ ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) )
18 5 funcf2lem2 ( 𝑔X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ ( 𝑔 Fn ( ∅ × ∅ ) ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ⟶ ( ( 𝑓𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓𝑦 ) ) ) )
19 17 18 mpbiran2 ( 𝑔X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ 𝑔 Fn ( ∅ × ∅ ) )
20 0xp ( ∅ × ∅ ) = ∅
21 20 fneq2i ( 𝑔 Fn ( ∅ × ∅ ) ↔ 𝑔 Fn ∅ )
22 fn0 ( 𝑔 Fn ∅ ↔ 𝑔 = ∅ )
23 19 21 22 3bitri ( 𝑔X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ 𝑔 = ∅ )
24 ral0 𝑥 ∈ ∅ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ ∅ ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓𝑥 ) ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ ∅ ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ ∅ ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( ⟨ ( 𝑓𝑥 ) , ( 𝑓𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑓𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) )
25 15 16 23 24 0funclem ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) ) )
26 brsnop ( ( ∅ ∈ V ∧ ∅ ∈ V ) → ( 𝑓 { ⟨ ∅ , ∅ ⟩ } 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) ) )
27 3 3 26 mp2an ( 𝑓 { ⟨ ∅ , ∅ ⟩ } 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) )
28 25 27 bitr4di ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔𝑓 { ⟨ ∅ , ∅ ⟩ } 𝑔 ) )
29 2 4 28 eqbrrdiv ( 𝜑 → ( ∅ Func 𝐶 ) = { ⟨ ∅ , ∅ ⟩ } )