Step |
Hyp |
Ref |
Expression |
1 |
|
0func.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
relfunc |
⊢ Rel ( ∅ Func 𝐶 ) |
3 |
|
0ex |
⊢ ∅ ∈ V |
4 |
3 3
|
relsnop |
⊢ Rel { 〈 ∅ , ∅ 〉 } |
5 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Hom ‘ ∅ ) = ( Hom ‘ ∅ ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Id ‘ ∅ ) = ( Id ‘ ∅ ) |
10 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( comp ‘ ∅ ) = ( comp ‘ ∅ ) |
12 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
13 |
|
0cat |
⊢ ∅ ∈ Cat |
14 |
13
|
a1i |
⊢ ( 𝜑 → ∅ ∈ Cat ) |
15 |
5 6 7 8 9 10 11 12 14 1
|
isfunc |
⊢ ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔 ↔ ( 𝑓 : ∅ ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ∅ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ ∅ ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ ∅ ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ∅ ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
16 |
|
f0bi |
⊢ ( 𝑓 : ∅ ⟶ ( Base ‘ 𝐶 ) ↔ 𝑓 = ∅ ) |
17 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) |
18 |
5
|
funcf2lem2 |
⊢ ( 𝑔 ∈ X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ ( 𝑔 Fn ( ∅ × ∅ ) ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
19 |
17 18
|
mpbiran2 |
⊢ ( 𝑔 ∈ X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ 𝑔 Fn ( ∅ × ∅ ) ) |
20 |
|
0xp |
⊢ ( ∅ × ∅ ) = ∅ |
21 |
20
|
fneq2i |
⊢ ( 𝑔 Fn ( ∅ × ∅ ) ↔ 𝑔 Fn ∅ ) |
22 |
|
fn0 |
⊢ ( 𝑔 Fn ∅ ↔ 𝑔 = ∅ ) |
23 |
19 21 22
|
3bitri |
⊢ ( 𝑔 ∈ X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ 𝑔 = ∅ ) |
24 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ ∅ ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ ∅ ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ∅ ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) |
25 |
15 16 23 24
|
0funclem |
⊢ ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) ) ) |
26 |
|
brsnop |
⊢ ( ( ∅ ∈ V ∧ ∅ ∈ V ) → ( 𝑓 { 〈 ∅ , ∅ 〉 } 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) ) ) |
27 |
3 3 26
|
mp2an |
⊢ ( 𝑓 { 〈 ∅ , ∅ 〉 } 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) ) |
28 |
25 27
|
bitr4di |
⊢ ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔 ↔ 𝑓 { 〈 ∅ , ∅ 〉 } 𝑔 ) ) |
29 |
2 4 28
|
eqbrrdiv |
⊢ ( 𝜑 → ( ∅ Func 𝐶 ) = { 〈 ∅ , ∅ 〉 } ) |