Description: The source cateogry of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | func0g.a | |- A = ( Base ` C ) |
|
| func0g.b | |- B = ( Base ` D ) |
||
| func0g.d | |- ( ph -> B = (/) ) |
||
| func0g.f | |- ( ph -> F ( C Func D ) G ) |
||
| Assertion | func0g | |- ( ph -> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | func0g.a | |- A = ( Base ` C ) |
|
| 2 | func0g.b | |- B = ( Base ` D ) |
|
| 3 | func0g.d | |- ( ph -> B = (/) ) |
|
| 4 | func0g.f | |- ( ph -> F ( C Func D ) G ) |
|
| 5 | 1 2 4 | funcf1 | |- ( ph -> F : A --> B ) |
| 6 | 5 | f002 | |- ( ph -> ( B = (/) -> A = (/) ) ) |
| 7 | 3 6 | mpd | |- ( ph -> A = (/) ) |