Metamath Proof Explorer
Description: The source cateogry of a functor to the empty category must be empty
as well. (Contributed by Zhi Wang, 19-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
func0g.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
|
|
func0g.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
|
|
func0g.d |
⊢ ( 𝜑 → 𝐵 = ∅ ) |
|
|
func0g.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
|
Assertion |
func0g |
⊢ ( 𝜑 → 𝐴 = ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
func0g.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 2 |
|
func0g.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 3 |
|
func0g.d |
⊢ ( 𝜑 → 𝐵 = ∅ ) |
| 4 |
|
func0g.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 5 |
1 2 4
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 6 |
5
|
f002 |
⊢ ( 𝜑 → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
| 7 |
3 6
|
mpd |
⊢ ( 𝜑 → 𝐴 = ∅ ) |