Metamath Proof Explorer
Description: The source cateogry of a functor to the empty category must be empty as
well. (Contributed by Zhi Wang, 19-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
func0g.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
|
|
func0g.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
|
|
func0g.d |
⊢ ( 𝜑 → 𝐵 = ∅ ) |
|
|
func0g2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
|
Assertion |
func0g2 |
⊢ ( 𝜑 → 𝐴 = ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
func0g.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 2 |
|
func0g.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 3 |
|
func0g.d |
⊢ ( 𝜑 → 𝐵 = ∅ ) |
| 4 |
|
func0g2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 5 |
4
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 6 |
1 2 3 5
|
func0g |
⊢ ( 𝜑 → 𝐴 = ∅ ) |