| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → 𝐶 ∈ V ) |
| 2 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → ∅ = ( Base ‘ 𝐶 ) ) |
| 3 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → 𝑑 ∈ Cat ) |
| 4 |
1 2 3
|
0funcg |
⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → ( 𝐶 Func 𝑑 ) = { 〈 ∅ , ∅ 〉 } ) |
| 5 |
|
opex |
⊢ 〈 ∅ , ∅ 〉 ∈ V |
| 6 |
|
sneq |
⊢ ( 𝑓 = 〈 ∅ , ∅ 〉 → { 𝑓 } = { 〈 ∅ , ∅ 〉 } ) |
| 7 |
6
|
eqeq2d |
⊢ ( 𝑓 = 〈 ∅ , ∅ 〉 → ( ( 𝐶 Func 𝑑 ) = { 𝑓 } ↔ ( 𝐶 Func 𝑑 ) = { 〈 ∅ , ∅ 〉 } ) ) |
| 8 |
5 7
|
spcev |
⊢ ( ( 𝐶 Func 𝑑 ) = { 〈 ∅ , ∅ 〉 } → ∃ 𝑓 ( 𝐶 Func 𝑑 ) = { 𝑓 } ) |
| 9 |
4 8
|
syl |
⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → ∃ 𝑓 ( 𝐶 Func 𝑑 ) = { 𝑓 } ) |
| 10 |
|
eusn |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ↔ ∃ 𝑓 ( 𝐶 Func 𝑑 ) = { 𝑓 } ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ) |
| 12 |
11
|
ralrimiva |
⊢ ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) → ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ) |
| 13 |
|
0cat |
⊢ ∅ ∈ Cat |
| 14 |
|
oveq2 |
⊢ ( 𝑑 = ∅ → ( 𝐶 Func 𝑑 ) = ( 𝐶 Func ∅ ) ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝑑 = ∅ → ( 𝑓 ∈ ( 𝐶 Func 𝑑 ) ↔ 𝑓 ∈ ( 𝐶 Func ∅ ) ) ) |
| 16 |
15
|
eubidv |
⊢ ( 𝑑 = ∅ → ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ↔ ∃! 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) ) ) |
| 17 |
16
|
rspcv |
⊢ ( ∅ ∈ Cat → ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) ) ) |
| 18 |
13 17
|
ax-mp |
⊢ ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) ) |
| 19 |
|
euex |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) ) |
| 20 |
|
funcrcl |
⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ( 𝐶 ∈ Cat ∧ ∅ ∈ Cat ) ) |
| 21 |
20
|
simpld |
⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → 𝐶 ∈ Cat ) |
| 22 |
21
|
elexd |
⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → 𝐶 ∈ V ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 24 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
| 25 |
|
eqidd |
⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ∅ = ∅ ) |
| 26 |
|
id |
⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → 𝑓 ∈ ( 𝐶 Func ∅ ) ) |
| 27 |
23 24 25 26
|
func0g2 |
⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ( Base ‘ 𝐶 ) = ∅ ) |
| 28 |
27
|
eqcomd |
⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ∅ = ( Base ‘ 𝐶 ) ) |
| 29 |
22 28
|
jca |
⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ) |
| 30 |
29
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) → ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ) |
| 31 |
18 19 30
|
3syl |
⊢ ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) → ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ) |
| 32 |
12 31
|
impbii |
⊢ ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ↔ ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ) |