| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|- ( ( ( C e. _V /\ (/) = ( Base ` C ) ) /\ d e. Cat ) -> C e. _V ) |
| 2 |
|
simplr |
|- ( ( ( C e. _V /\ (/) = ( Base ` C ) ) /\ d e. Cat ) -> (/) = ( Base ` C ) ) |
| 3 |
|
simpr |
|- ( ( ( C e. _V /\ (/) = ( Base ` C ) ) /\ d e. Cat ) -> d e. Cat ) |
| 4 |
1 2 3
|
0funcg |
|- ( ( ( C e. _V /\ (/) = ( Base ` C ) ) /\ d e. Cat ) -> ( C Func d ) = { <. (/) , (/) >. } ) |
| 5 |
|
opex |
|- <. (/) , (/) >. e. _V |
| 6 |
|
sneq |
|- ( f = <. (/) , (/) >. -> { f } = { <. (/) , (/) >. } ) |
| 7 |
6
|
eqeq2d |
|- ( f = <. (/) , (/) >. -> ( ( C Func d ) = { f } <-> ( C Func d ) = { <. (/) , (/) >. } ) ) |
| 8 |
5 7
|
spcev |
|- ( ( C Func d ) = { <. (/) , (/) >. } -> E. f ( C Func d ) = { f } ) |
| 9 |
4 8
|
syl |
|- ( ( ( C e. _V /\ (/) = ( Base ` C ) ) /\ d e. Cat ) -> E. f ( C Func d ) = { f } ) |
| 10 |
|
eusn |
|- ( E! f f e. ( C Func d ) <-> E. f ( C Func d ) = { f } ) |
| 11 |
9 10
|
sylibr |
|- ( ( ( C e. _V /\ (/) = ( Base ` C ) ) /\ d e. Cat ) -> E! f f e. ( C Func d ) ) |
| 12 |
11
|
ralrimiva |
|- ( ( C e. _V /\ (/) = ( Base ` C ) ) -> A. d e. Cat E! f f e. ( C Func d ) ) |
| 13 |
|
0cat |
|- (/) e. Cat |
| 14 |
|
oveq2 |
|- ( d = (/) -> ( C Func d ) = ( C Func (/) ) ) |
| 15 |
14
|
eleq2d |
|- ( d = (/) -> ( f e. ( C Func d ) <-> f e. ( C Func (/) ) ) ) |
| 16 |
15
|
eubidv |
|- ( d = (/) -> ( E! f f e. ( C Func d ) <-> E! f f e. ( C Func (/) ) ) ) |
| 17 |
16
|
rspcv |
|- ( (/) e. Cat -> ( A. d e. Cat E! f f e. ( C Func d ) -> E! f f e. ( C Func (/) ) ) ) |
| 18 |
13 17
|
ax-mp |
|- ( A. d e. Cat E! f f e. ( C Func d ) -> E! f f e. ( C Func (/) ) ) |
| 19 |
|
euex |
|- ( E! f f e. ( C Func (/) ) -> E. f f e. ( C Func (/) ) ) |
| 20 |
|
funcrcl |
|- ( f e. ( C Func (/) ) -> ( C e. Cat /\ (/) e. Cat ) ) |
| 21 |
20
|
simpld |
|- ( f e. ( C Func (/) ) -> C e. Cat ) |
| 22 |
21
|
elexd |
|- ( f e. ( C Func (/) ) -> C e. _V ) |
| 23 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 24 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 25 |
|
eqidd |
|- ( f e. ( C Func (/) ) -> (/) = (/) ) |
| 26 |
|
id |
|- ( f e. ( C Func (/) ) -> f e. ( C Func (/) ) ) |
| 27 |
23 24 25 26
|
func0g2 |
|- ( f e. ( C Func (/) ) -> ( Base ` C ) = (/) ) |
| 28 |
27
|
eqcomd |
|- ( f e. ( C Func (/) ) -> (/) = ( Base ` C ) ) |
| 29 |
22 28
|
jca |
|- ( f e. ( C Func (/) ) -> ( C e. _V /\ (/) = ( Base ` C ) ) ) |
| 30 |
29
|
exlimiv |
|- ( E. f f e. ( C Func (/) ) -> ( C e. _V /\ (/) = ( Base ` C ) ) ) |
| 31 |
18 19 30
|
3syl |
|- ( A. d e. Cat E! f f e. ( C Func d ) -> ( C e. _V /\ (/) = ( Base ` C ) ) ) |
| 32 |
12 31
|
impbii |
|- ( ( C e. _V /\ (/) = ( Base ` C ) ) <-> A. d e. Cat E! f f e. ( C Func d ) ) |