Metamath Proof Explorer


Theorem 0funcg

Description: The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses 0funcg.c
|- ( ph -> C e. V )
0funcg.b
|- ( ph -> (/) = ( Base ` C ) )
0funcg.d
|- ( ph -> D e. Cat )
Assertion 0funcg
|- ( ph -> ( C Func D ) = { <. (/) , (/) >. } )

Proof

Step Hyp Ref Expression
1 0funcg.c
 |-  ( ph -> C e. V )
2 0funcg.b
 |-  ( ph -> (/) = ( Base ` C ) )
3 0funcg.d
 |-  ( ph -> D e. Cat )
4 relfunc
 |-  Rel ( C Func D )
5 0ex
 |-  (/) e. _V
6 5 5 relsnop
 |-  Rel { <. (/) , (/) >. }
7 1 2 3 0funcg2
 |-  ( ph -> ( f ( C Func D ) g <-> ( f = (/) /\ g = (/) ) ) )
8 brsnop
 |-  ( ( (/) e. _V /\ (/) e. _V ) -> ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) )
9 5 5 8 mp2an
 |-  ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) )
10 7 9 bitr4di
 |-  ( ph -> ( f ( C Func D ) g <-> f { <. (/) , (/) >. } g ) )
11 4 6 10 eqbrrdiv
 |-  ( ph -> ( C Func D ) = { <. (/) , (/) >. } )