| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0funcg.c |
|- ( ph -> C e. V ) |
| 2 |
|
0funcg.b |
|- ( ph -> (/) = ( Base ` C ) ) |
| 3 |
|
0funcg.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
relfunc |
|- Rel ( C Func D ) |
| 5 |
|
0ex |
|- (/) e. _V |
| 6 |
5 5
|
relsnop |
|- Rel { <. (/) , (/) >. } |
| 7 |
1 2 3
|
0funcg2 |
|- ( ph -> ( f ( C Func D ) g <-> ( f = (/) /\ g = (/) ) ) ) |
| 8 |
|
brsnop |
|- ( ( (/) e. _V /\ (/) e. _V ) -> ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) ) |
| 9 |
5 5 8
|
mp2an |
|- ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) |
| 10 |
7 9
|
bitr4di |
|- ( ph -> ( f ( C Func D ) g <-> f { <. (/) , (/) >. } g ) ) |
| 11 |
4 6 10
|
eqbrrdiv |
|- ( ph -> ( C Func D ) = { <. (/) , (/) >. } ) |