| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0funcg.c |
|- ( ph -> C e. V ) |
| 2 |
|
0funcg.b |
|- ( ph -> (/) = ( Base ` C ) ) |
| 3 |
|
0funcg.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 5 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 6 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 7 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 8 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 9 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 10 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 11 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 12 |
|
0catg |
|- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. Cat ) |
| 13 |
1 2 12
|
syl2anc |
|- ( ph -> C e. Cat ) |
| 14 |
4 5 6 7 8 9 10 11 13 3
|
isfunc |
|- ( ph -> ( F ( C Func D ) G <-> ( F : ( Base ` C ) --> ( Base ` D ) /\ G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) /\ A. x e. ( Base ` C ) ( ( ( x G x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( F ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. m e. ( x ( Hom ` C ) y ) A. n e. ( y ( Hom ` C ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` C ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` D ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) ) |
| 15 |
2
|
feq2d |
|- ( ph -> ( F : (/) --> ( Base ` D ) <-> F : ( Base ` C ) --> ( Base ` D ) ) ) |
| 16 |
|
f0bi |
|- ( F : (/) --> ( Base ` D ) <-> F = (/) ) |
| 17 |
15 16
|
bitr3di |
|- ( ph -> ( F : ( Base ` C ) --> ( Base ` D ) <-> F = (/) ) ) |
| 18 |
2
|
eqcomd |
|- ( ph -> ( Base ` C ) = (/) ) |
| 19 |
|
rzal |
|- ( ( Base ` C ) = (/) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 21 |
4
|
funcf2lem2 |
|- ( G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
| 22 |
21
|
a1i |
|- ( ph -> ( G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) ) |
| 23 |
20 22
|
mpbiran2d |
|- ( ph -> ( G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> G Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 24 |
2
|
sqxpeqd |
|- ( ph -> ( (/) X. (/) ) = ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 25 |
|
0xp |
|- ( (/) X. (/) ) = (/) |
| 26 |
24 25
|
eqtr3di |
|- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = (/) ) |
| 27 |
26
|
fneq2d |
|- ( ph -> ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> G Fn (/) ) ) |
| 28 |
|
fn0 |
|- ( G Fn (/) <-> G = (/) ) |
| 29 |
27 28
|
bitrdi |
|- ( ph -> ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> G = (/) ) ) |
| 30 |
23 29
|
bitrd |
|- ( ph -> ( G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> G = (/) ) ) |
| 31 |
|
rzal |
|- ( ( Base ` C ) = (/) -> A. x e. ( Base ` C ) ( ( ( x G x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( F ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. m e. ( x ( Hom ` C ) y ) A. n e. ( y ( Hom ` C ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` C ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` D ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) |
| 32 |
18 31
|
syl |
|- ( ph -> A. x e. ( Base ` C ) ( ( ( x G x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( F ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. m e. ( x ( Hom ` C ) y ) A. n e. ( y ( Hom ` C ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` C ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` D ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) |
| 33 |
14 17 30 32
|
0funcglem |
|- ( ph -> ( F ( C Func D ) G <-> ( F = (/) /\ G = (/) ) ) ) |