Description: Lemma for 0funcg . (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0funcglem.1 | |- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
|
| 0funcglem.2 | |- ( ph -> ( ch <-> et ) ) |
||
| 0funcglem.3 | |- ( ph -> ( th <-> ze ) ) |
||
| 0funcglem.4 | |- ( ph -> ta ) |
||
| Assertion | 0funcglem | |- ( ph -> ( ps <-> ( et /\ ze ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0funcglem.1 | |- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
|
| 2 | 0funcglem.2 | |- ( ph -> ( ch <-> et ) ) |
|
| 3 | 0funcglem.3 | |- ( ph -> ( th <-> ze ) ) |
|
| 4 | 0funcglem.4 | |- ( ph -> ta ) |
|
| 5 | df-3an | |- ( ( ch /\ th /\ ta ) <-> ( ( ch /\ th ) /\ ta ) ) |
|
| 6 | 1 5 | bitrdi | |- ( ph -> ( ps <-> ( ( ch /\ th ) /\ ta ) ) ) |
| 7 | 4 6 | mpbiran2d | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
| 8 | 2 3 | anbi12d | |- ( ph -> ( ( ch /\ th ) <-> ( et /\ ze ) ) ) |
| 9 | 7 8 | bitrd | |- ( ph -> ( ps <-> ( et /\ ze ) ) ) |