Metamath Proof Explorer


Theorem 0funcglem

Description: Lemma for 0funcg . (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses 0funcglem.1
|- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) )
0funcglem.2
|- ( ph -> ( ch <-> et ) )
0funcglem.3
|- ( ph -> ( th <-> ze ) )
0funcglem.4
|- ( ph -> ta )
Assertion 0funcglem
|- ( ph -> ( ps <-> ( et /\ ze ) ) )

Proof

Step Hyp Ref Expression
1 0funcglem.1
 |-  ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) )
2 0funcglem.2
 |-  ( ph -> ( ch <-> et ) )
3 0funcglem.3
 |-  ( ph -> ( th <-> ze ) )
4 0funcglem.4
 |-  ( ph -> ta )
5 df-3an
 |-  ( ( ch /\ th /\ ta ) <-> ( ( ch /\ th ) /\ ta ) )
6 1 5 bitrdi
 |-  ( ph -> ( ps <-> ( ( ch /\ th ) /\ ta ) ) )
7 4 6 mpbiran2d
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
8 2 3 anbi12d
 |-  ( ph -> ( ( ch /\ th ) <-> ( et /\ ze ) ) )
9 7 8 bitrd
 |-  ( ph -> ( ps <-> ( et /\ ze ) ) )