Metamath Proof Explorer


Theorem 0funcglem

Description: Lemma for 0funcg . (Contributed by Zhi Wang, 17-Oct-2025)

Ref Expression
Hypotheses 0funcglem.1 φ ψ χ θ τ
0funcglem.2 φ χ η
0funcglem.3 φ θ ζ
0funcglem.4 φ τ
Assertion 0funcglem φ ψ η ζ

Proof

Step Hyp Ref Expression
1 0funcglem.1 φ ψ χ θ τ
2 0funcglem.2 φ χ η
3 0funcglem.3 φ θ ζ
4 0funcglem.4 φ τ
5 df-3an χ θ τ χ θ τ
6 1 5 bitrdi φ ψ χ θ τ
7 4 6 mpbiran2d φ ψ χ θ
8 2 3 anbi12d φ χ θ η ζ
9 7 8 bitrd φ ψ η ζ