Description: Lemma for 0funcg . (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0funcglem.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) | |
| 0funcglem.2 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜂 ) ) | ||
| 0funcglem.3 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜁 ) ) | ||
| 0funcglem.4 | ⊢ ( 𝜑 → 𝜏 ) | ||
| Assertion | 0funcglem | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜂 ∧ 𝜁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0funcglem.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) | |
| 2 | 0funcglem.2 | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜂 ) ) | |
| 3 | 0funcglem.3 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜁 ) ) | |
| 4 | 0funcglem.4 | ⊢ ( 𝜑 → 𝜏 ) | |
| 5 | df-3an | ⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ↔ ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜏 ) ) | |
| 6 | 1 5 | bitrdi | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜒 ∧ 𝜃 ) ∧ 𝜏 ) ) ) |
| 7 | 4 6 | mpbiran2d | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
| 8 | 2 3 | anbi12d | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) ↔ ( 𝜂 ∧ 𝜁 ) ) ) |
| 9 | 7 8 | bitrd | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜂 ∧ 𝜁 ) ) ) |