Description: The source cateogry of a functor to the empty category must be empty as well. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | func0g.a | |- A = ( Base ` C ) |
|
| func0g.b | |- B = ( Base ` D ) |
||
| func0g.d | |- ( ph -> B = (/) ) |
||
| func0g2.f | |- ( ph -> F e. ( C Func D ) ) |
||
| Assertion | func0g2 | |- ( ph -> A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | func0g.a | |- A = ( Base ` C ) |
|
| 2 | func0g.b | |- B = ( Base ` D ) |
|
| 3 | func0g.d | |- ( ph -> B = (/) ) |
|
| 4 | func0g2.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | 4 | func1st2nd | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 6 | 1 2 3 5 | func0g | |- ( ph -> A = (/) ) |