Metamath Proof Explorer


Theorem 0iun

Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion 0iun xA=

Proof

Step Hyp Ref Expression
1 rex0 ¬xyA
2 eliun yxAxyA
3 1 2 mtbir ¬yxA
4 3 nel0 xA=