Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter I
0pssin
Next ⟩
_Begriffsschrift_ Notation hints
Metamath Proof Explorer
Ascii
Unicode
Theorem
0pssin
Description:
Express that an intersection is not empty.
(Contributed by
RP
, 16-Apr-2020)
Ref
Expression
Assertion
0pssin
⊢
∅
⊂
A
∩
B
↔
∃
x
x
∈
A
∧
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
0pss
⊢
∅
⊂
A
∩
B
↔
A
∩
B
≠
∅
2
ndisj
⊢
A
∩
B
≠
∅
↔
∃
x
x
∈
A
∧
x
∈
B
3
1
2
bitri
⊢
∅
⊂
A
∩
B
↔
∃
x
x
∈
A
∧
x
∈
B