Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | 0pssin | ⊢ ( ∅ ⊊ ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pss | ⊢ ( ∅ ⊊ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) | |
2 | ndisj | ⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
3 | 1 2 | bitri | ⊢ ( ∅ ⊊ ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |