Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0pssin | ⊢ ( ∅ ⊊ ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pss | ⊢ ( ∅ ⊊ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) | |
| 2 | ndisj | ⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ∅ ⊊ ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |