Metamath Proof Explorer


Theorem 0pssin

Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020)

Ref Expression
Assertion 0pssin ( ∅ ⊊ ( 𝐴𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 0pss ( ∅ ⊊ ( 𝐴𝐵 ) ↔ ( 𝐴𝐵 ) ≠ ∅ )
2 ndisj ( ( 𝐴𝐵 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 1 2 bitri ( ∅ ⊊ ( 𝐴𝐵 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )