Metamath Proof Explorer


Theorem 0pthonv

Description: For each vertex there is a path of length 0 from the vertex to itself. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 21-Jan-2021)

Ref Expression
Hypothesis 0pthon.v V=VtxG
Assertion 0pthonv NVfpfNPathsOnGNp

Proof

Step Hyp Ref Expression
1 0pthon.v V=VtxG
2 0ex V
3 snex 0NV
4 2 3 pm3.2i V0NV
5 1 0pthon1 NVNPathsOnGN0N
6 breq12 f=p=0NfNPathsOnGNpNPathsOnGN0N
7 6 spc2egv V0NVNPathsOnGN0NfpfNPathsOnGNp
8 4 5 7 mpsyl NVfpfNPathsOnGNp