| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0pthon.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 3 |  | snex | ⊢ { 〈 0 ,  𝑁 〉 }  ∈  V | 
						
							| 4 | 2 3 | pm3.2i | ⊢ ( ∅  ∈  V  ∧  { 〈 0 ,  𝑁 〉 }  ∈  V ) | 
						
							| 5 | 1 | 0pthon1 | ⊢ ( 𝑁  ∈  𝑉  →  ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 ,  𝑁 〉 } ) | 
						
							| 6 |  | breq12 | ⊢ ( ( 𝑓  =  ∅  ∧  𝑝  =  { 〈 0 ,  𝑁 〉 } )  →  ( 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑝  ↔  ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 ,  𝑁 〉 } ) ) | 
						
							| 7 | 6 | spc2egv | ⊢ ( ( ∅  ∈  V  ∧  { 〈 0 ,  𝑁 〉 }  ∈  V )  →  ( ∅ ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) { 〈 0 ,  𝑁 〉 }  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑝 ) ) | 
						
							| 8 | 4 5 7 | mpsyl | ⊢ ( 𝑁  ∈  𝑉  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑁 ( PathsOn ‘ 𝐺 ) 𝑁 ) 𝑝 ) |