Metamath Proof Explorer


Theorem 0wdom

Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion 0wdom XV*X

Proof

Step Hyp Ref Expression
1 eqid =
2 1 orci =zz:Xonto
3 brwdom XV*X=zz:Xonto
4 2 3 mpbiri XV*X