Metamath Proof Explorer


Theorem fowdom

Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion fowdom FVF:YontoXX*Y

Proof

Step Hyp Ref Expression
1 elex FVFV
2 foeq1 z=Fz:YontoXF:YontoX
3 2 spcegv FVF:YontoXzz:YontoX
4 3 imp FVF:YontoXzz:YontoX
5 4 olcd FVF:YontoXX=zz:YontoX
6 fof F:YontoXF:YX
7 dmfex FVF:YXYV
8 6 7 sylan2 FVF:YontoXYV
9 brwdom YVX*YX=zz:YontoX
10 8 9 syl FVF:YontoXX*YX=zz:YontoX
11 5 10 mpbird FVF:YontoXX*Y
12 1 11 sylan FVF:YontoXX*Y